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RÉSUMÉ

On étudie l’ordre faible facial, un poset introduit par Krob, Latapy, Novelli, Phan
et Schwer à FPSAC 2001 sur les groupes symétriques. L’ordre faible facial est
une extension de l’ordre faible d’un groupe de Coxeter fini W à l’ensemble des
faces du permutoèdre de W . On commence par donner les notions de base sur les
groupes de Coxeter, l’ordre faible et le permutoèdre avant de définir l’ordre faible
facial sur les groupes de Coxeter. Ensuite, on donne trois caractérisations de ce
poset : l’original qui utilise les relations de couverture (étendu du type A à tout
groupe de Coxeter par Palacios et Ronco en 2006), la caractérisation géométrique
qui généralise la notion d’ensemble d’inversions, et la caractérisation combinatoire
comme un sous-poset induit du poset d’intervalles de l’ordre faible. On termine la
section sur les groupes de Coxeter en utilisant ces caractérisations pour montrer
que l’ordre faible facial d’un groupe de Coxeter est un treillis. Ce résultat est une
extension d’un résultat bien connu de Björner, établi en 1984 pour l’ordre faible
classique.

On continue notre étude de la généralisation de l’ordre faible facial au contexte
des arrangements d’hyperplans. On commence par donner les notions de base sur
les arrangements d’hyperplans, les faces d’un arrangement et le poset des régions.
De plus, on donne la définition d’un matroïde orienté et de ses covecteurs (une
généralisation d’un arrangement d’hyperplans central et de ses faces). Ensuite,
on fournit quatre caractérisations de l’ordre faible facial pour les arrangements
d’hyperplans : comme un sous-poset induit du poset des intervalles du poset des
régions, en donnant ses relations de couverture, en utilisant les covecteurs du
matroïde orienté associé à l’arrangement et en utilisant la structure géométrique
d’un zonotope associé à l’arrangement. On termine la section sur les arrangements
d’hyperplans en utilisant ces caractérisations pour montrer que l’ordre faible fa-
cial sur les arrangements d’hyperplans simpliciaux est un treillis. Ceci est une
extension d’un résultat bien connu de Björner, Edelman et Ziegler, établi en 1990
pour le poset des régions.

On conclut cette thèse en décrivant des problèmes ouverts et des directions pour
l’avenir de cette recherche.

Mots clés: ordre faible, groupes de Coxeter, arrangements d’hyperplans, poset
de regions, matroïdes orientés, poset de topes, permutoèdre, zonotopes, quotients
de treillis, associaèdre





ABSTRACT

We investigate the facial weak order, a poset structure that was first introduced by
Krob, Latapy, Novelli, Phan and Schwer at FPSAC 2001 on the symmetric groups.
The facial weak order extends the weak order on a finite Coxeter group W to the
set of all faces of the permutahedron ofW . We first give the necessary background
material on Coxeter groups, the weak order and permutahedra before defining the
facial weak order on Coxeter groups. We then provide three characterizations of
this poset: the original one in terms of cover relations (extended from the type A
case to all Coxeter groups by Palacios and Ronco in 2006), the geometric one that
generalizes the notion of inversion sets and the combinatorial one as an induced
subposet of the poset of intervals of the weak order. We end the Coxeter group
part of this thesis by using these characterizations to show that the facial weak
order on Coxeter groups is in fact a lattice, extending a well-known result of
Björner in 1984 for the classical weak order.

We continue our study by generalizing the facial weak order to the context of
hyperplane arrangements. We begin with the necessary background on hyperplane
arrangements, faces of an arrangement and the poset of regions in addition to
background on oriented matroids and their covectors (a generalization of central
hyperplane arrangements and their faces). We then provide four characterizations
of the facial weak order for hyperplane arrangements: as an induced subposet of
the poset of intervals of the poset of regions, by describing their cover relations,
using covectors (from its associated oriented matroids) and using the geometric
structure of the zonotope associated to the arrangement. We end the hyperplane
arrangement part of this thesis by using these characterizations to show that
the facial weak order on simplicial hyperplane arrangements is in fact a lattice,
extending a well-known result of Björner, Edelman and Ziegler in 1990 for the
poset of regions.

We conclude our thesis by describing open problems and further directions of
research.

Keywords: weak order, Coxeter groups, hyperplane arrangements, poset of re-
gions, oriented matroids, tope poset, permutahedra, zonotopes, lattice quotients,
associahedra





INTRODUCTION

H.S.M. Coxeter and his groups

Suppose you are standing in front of a mirror, admiring your reflection. After a few

hours of gazing at your perfection, you look past your reflection to notice another

mirror directly behind you. A second mirror that makes your own reflection

reflect, creating a kaleidoscope of never-ending reflections of your awesome self.

Now suppose you decide to shake things up a bit and you move the mirror behind

you so that it is next to the mirror in front of you. As you are placing this second

mirror, you notice that the number of times you see yourself changes depending

on the angle between the mirrors! As you decrease the angle between the mirrors,

more and more reflections of your gorgeous self appear. This makes you wonder:

what decides these reflections? Is there a way to know how many reflections of

yourself are going to appear if we know the angle between the mirrors? Is there a

nice way to generate and represent these reflections?

These were some of the first questions posed and answered by the Canadian-British

mathematician Harold Scott MacDonald Coxeter (H.S.M. Coxeter or Donald Cox-

eter for short). Coxeter was known for walking around Cambridge (where he did

his Ph.D.) with mirrors so that he could show their amazing properties to anyone

and everyone that would listen.1 The reflections in these mirrors form what is

called a discrete reflection group. In 1934, while at Princeton, Coxeter showed

1For a history on Coxeter and his life, the reader is referred to the amazing book “King of

Infinite Space: Donald Coxeter, the Man Who Saved Geometry” by Roberts (Roberts, 2006).
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that all finite discrete reflection groups can be represented by certain abstract

groups (see (Coxeter, 1934)). Then in 1935 he showed that these abstract groups

represent all finite discrete reflection groups in (Coxeter, 1935). Tits in (Tits,

1961) called these abstract groups “groupes de Coxeter” (or “Coxeter groups” in

English) and, from then on, in honour of Coxeter, the term Coxeter group has

stuck around.

Due to their relationship with mirrors, Coxeter groups encode the symmetries

of regular polyhedra. The different polyhedra are the different types of Coxeter

groups. The type A Coxeter groups represent the symmetries of such objects

as the triangle and the tetrahedron.2 The type B Coxeter groups represent the

symmetries of such objects as the square, the cube, and the octahedron. There

are also the types D,E, F,H and I Coxeter groups, with I representing the sym-

metries of regular polygons.3 The two other 3-dimensional regular polytopes are

found in the type H3 Coxeter group. The link between finite reflection groups

and finite Coxeter groups are discussed in more precise mathematical terms from

§ 1.1 to § 1.3.

A. Björner names an order

Looking back at the two mirrors in front of you, you realize that there are many

different ways to order your own reflections. You could order them in a clockwise

order, a counter-clockwise order, from those reflections closest to you to the ones

that are further away, or the reverse, and potentially in other weird ways (such

as zigzags). Imagine what were to happen if you had a third mirror on top of you

producing even more reflections! The way you could order these reflections is very

2The type A Coxeter groups are also commonly referred to as symmetric groups.

3The type I Coxeter groups are also commonly referred to as dihedral groups.
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useful as it gives information on the structure of the group itself.

One of the most well-studied orders in Coxeter groups is called the weak order.

The weak order is nothing more than ordering the reflections starting from the

ones closest to yourself (yourself included!) and going “further away” from you.

Think of it as a walk starting from yourself and into the mirror-worlds where

you are only ever allowed to walk away from where you started. This order was

first introduced in 1963 by Guilbaud and Rosenstiehl in (Guilbaud & Rosenstiehl,

1963) where it was created to help understand different ways to choose candidates

from a ballot.

In their construction, Guilbaud and Rosenstiehl introduced the order only for the

type A Coxeter groups. The name “weak order” and the generalization to all

Coxeter groups would appear in 1984 by Björner in his article (Björner, 1984).

This term was chosen as it was a weaker version of the strong order, also known

as the Bruhat order. In this same article, Björner stated that, in finite cases,

the weak order gives you a lattice, which for us translates to the fact that if two

of your reflections wanted to meet each other, they can do so by either both of

them walking strictly away from you or strictly toward you, going from one mirror

world to the next, until they meet at some unique spot. In mathematical terms,

a lattice can be thought of as an order in which every two elements has a least

upper bound and a greatest lower bound. It is easy to imagine ways of placing

your original mirrors so that there is no “furthest” reflection (such as if you are

completely surrounded by mirrors or if you put the mirrors back in their starting

positions: one in front of you and one directly behind you, so that they were

parallel). In this case, Björner stated that the weak order is a meet-semilattice,

which means that reflections can meet by walking strictly towards you, but not

necessarily by walking strictly away from you (or only having a greatest lower

bound but not necessarily a least upper bound). Topics related to the weak order
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and the weak order itself are discussed from sections § 1.4 to § 1.6.

Facial weak order

Another way to look at your reflections is to connect them all and construct a

polygon out of them. This polygon is called a permutahedron whose origins began

in (Schoute, 1911), but was first named in (Guilbaud & Rosenstiehl, 1963). In

higher dimensions, the permutahedron has many smaller faces such as vertices,

edges, polygons, etc. If we stand on one of the vertices of the permutahedron,

then we can think of the weak order as nothing more than us walking along

the edges from vertex to vertex where the vertices are ordered from closest to

our starting point to furthest from our starting point. The permutahedron and

various perspectives on it are discussed in the sections from § 1.7 to § 1.8.

Imagine now that we allow ourselves to walk not just on edges, but to also take

shortcuts through any of the faces. This is the idea of the facial weak order.

The facial weak order was first introduced by Krob, Latapy, Novelli, Phan and

Schwer in (Krob et al., 2001) for the type A Coxeter groups at the Formal Power

Series and Algebraic Combinatorics conference in 2001. They showed that the

facial weak order for the type A Coxeter groups is a lattice; in other words, every

two faces has a least upper bound and a greatest lower bound. As normally

happens, the facial weak order was then generalized to all Coxeter groups. This

generalization was done in 2006 by Palacios and Ronco in (Palacios & Ronco,

2006) where they gave a definition of the facial weak order on arbitrary Coxeter

groups, but gave no indication on whether the order was a lattice or not. We will

prove in Chapter 2 that the facial weak order does in fact produce a lattice for

arbitrary finite Coxeter groups.
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Hyperplane Arrangements

One thing that mathematicians love to do is to generalize results. After publish-

ing (Dermenjian et al., 2018) we decided to generalize our results from Coxeter

groups into hyperplane arrangements. This generalization is particularly inter-

esting because it gives us a new way to view the weak order: through mirror

hopping!

Enlarging each mirror in every direction forever, we obtain what is known as a

hyperplane, a space that cuts the entire universe in two. If you have just one

mirror in front of you, you can think of this mirror as the hyperplane, separating

everything on your side of the mirror from everything on your reflection’s side.

By considering mirrors as things that cut everything in two, we observe that we

are creating regions where each of your reflections live. Then you could visit your

reflection by “hopping” through a hyperplane/mirror, just like Alice through her

looking glass (Carroll, 1871). These mirrors form what is known as a hyperplane

arrangement and the areas that your reflections live, regions.

Hyperplane arrangements have a rich history dating back to ancient times, ever

since civilization started sharing things. In fact, you probably use hyperplane

arrangements in your daily life! (And that is not even including mirrors!) Imagine,

for instance, you are throwing a party and invited n people, but only have 1 cake

(or block of cheese if you would prefer). Each time you cut the cake, you are

introducing a hyperplane, cutting the entire universe (or in our case, the cake)

in two. An age-old question then asks: if you make n number of cuts, how

many slices will you have? This question was not formalized until 1826 with

Steiner’s first publication (Steiner, 1826) on laws of cutting 2-dimensional and 3-

dimensional Euclidean spaces. Although Steiner was the first to publish according

to Grünbaum (see the brief history in (Grünbaum, 2003, Chapter 18)), Steiner
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mentions in (Steiner, 1826) that many geometrical textbooks had started looking

at hyperplane arrangements at the time of his publication.

Going back to our mirrors and the hyperplane arrangement we get from taking a

finite number of mirrors, remember that we said a region is a place that each of

your reflections live. If you start on any region and then do a sequence of mirror

hoppings you can define an order on the regions much like we did in the previous

sections for Coxeter groups. You can order your regions from the regions that

are closest to you all the way to the regions that are furthest from you. This

order, which gives the poset of regions, is the hyperplane arrangement equivalent

to the weak order for Coxeter groups. Although hyperplane arrangements are old,

this partial order was first given by Edelman in (Edelman, 1984). Only six years

after, it was shown to be a lattice for large families of hyperplane arrangements

by Björner, Edelman and Ziegler in (Björner et al., 1990). Unlike Coxeter groups,

there are hyperplane arrangements which do not produce lattices for the poset of

regions if you start from a “bad” region. An example of this is given when we

discuss the poset of regions in § 3.4.

At this point you might be wondering what is the difference between hyperplane

arrangements and Coxeter groups because both are using mirrors. The only differ-

ence lies in the angles between the mirrors! Since Coxeter groups come from finite

reflection groups, the angles between the mirrors are forced4 to be a fraction of

the form π
n
where n ≥ 2. In hyperplane arrangements, we remove this restriction,

thus allowing for a much more general positioning of hyperplanes. Therefore, hy-

perplane arrangements are nothing more than a generalization of Coxeter groups

4It is slightly more complicated than this. Once you start choosing angles between some

mirrors, by the nature of finite reflection groups, you no longer have a choice of angles between

other mirrors. This is given in much more (precise) detail in Chapter 1.
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and they are discussed in further details from sections § 3.1 to § 3.5.

Oriented Matroids

But why stop at hyperplane arrangements? Continuing down this journey we can

generalize our results one step further to oriented matroids. Oriented matroids

are a generalization of central hyperplane arrangements: hyperplane arrangements

where every hyperplane contains some point in common (or in mirror land, a set

of mirrors that all meet at some point). According to the historical remarks in

(Björner et al., 1999) oriented matroids have a very rich history. The first few

papers that lead towards general oriented matroids started with (Minty, 1966).

Minty’s paper was likely an inspiration to (Fulkerson, 1968) and (Rockafellar,

1969), the latter being one of the first to propose the axiomatization of general

oriented matroids. The credit for the origins of oriented matroids is usually at-

tributed to Bland, Folkman, Las Vergnas and Lawrence who worked on oriented

matroids in the late 1960s and early 1970s. Folkman, in particular, started work-

ing on oriented matroids in 1967, but never got to finish his work as he died before

publishing. His work was then advanced by Lawrence in 1975 in his doctoral thesis.

Bland and Las Vergnas had also independently stumbled upon oriented matroids

(Bland through linear programming and Las Vergnas through oriented graphs) in

1974. Each of these four made substantial contributions to the theory and much

of the foundation for oriented matroids was laid out by these four people.

For us, the idea of oriented matroids is to generalize central hyperplane arrange-

ments using some of the most crucial properties of hyperplanes: that they split

the space into two halves and contain the origin. Thus we can think of oriented

matroids as objects whose elements, called covectors, store information on “sid-

edness”. In terms of mirrors, this idea of “sidedness” basically states whether an

object is on your side of a mirror or on the other side. By removing hyperplanes
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from the equation and only looking at the concept of sidedeness, oriented matroids

do not necessarily follow geometrical rules in normal (Euclidean) space. In fact,

one of the most famous oriented matroids which breaks a geometric rule is the one

that goes “against” Pappus’ hexagon theorem. Pappus’ hexagon theorem5 states

that if there is a line with the points A, B and C on it and another line with the

points a, b and c on it, then the intersection points of the lines Ab and Ba, Ac

and Ca, and Bc and Cb all lie on another straight line.

A

B

C

a b
c

An example of the oriented matroid that breaks this theorem can be seen in

Figure 3.10. It turns out that the oriented matroids that do not break geometric

rules are exactly the oriented matroids which arise from hyperplane arrangements.

We study oriented matroids in more detail from sections § 3.6 to § 3.8.

It turns out we can generalize the facial weak order of Coxeter groups to a facial

weak order on (the covectors of) oriented matroids. In Chapter 4 we introduce this

generalization and give multiple (equivalent) definitions of the facial weak order

on the faces of a hyperplane arrangement. Recall that the facial weak order was an

extension of the weak order to the faces of a Coxeter group (where we went from

walking vertex to vertex to walking face to face on the permutahedron). In the

5See (Coxeter, 1989) for the exact phrasing on Pappus’ hexagon theorem.
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case of hyperplane arrangements, the facial weak order is an extension of the poset

of regions to the faces of the hyperplane arrangement. In (Björner et al., 1990) it

was shown by Björner, Edelman and Ziegler that the poset of regions is a lattice

for a special family of hyperplane arrangements called simplicial arrangements.

Since the poset of regions is a lattice for simplicial arrangements, it would be

reasonable to conjecture that the facial weak order would also be a lattice for

simplicial arrangements. In Chapter 4 we show that this conjecture is correct

and that the facial weak order is a lattice for simplicial arrangements. We then

end this thesis by leaving the reader with a kaleidoscope of open problems and

questions that we have for the facial weak order and hope to solve in the coming

years.





CHAPTER I

COXETER GROUPS

The aim of this chapter is to prepare the reader for our first article (Dermenjian

et al., 2018), which we present in Chapter 2. We start with an introduction to

finite reflection groups and how they are related to finite Coxeter groups in § 1.1.

In § 1.2 we give a formal definition of Coxeter groups. Focusing on the geometric

aspect of Coxeter groups, we present in § 1.3 a geometric representation of a

Coxeter group. The combinatorial aspect of Coxeter groups is then discussed by

surveying the notions of reduced words and lengths of elements in § 1.4. In § 1.5

we review the notions of root systems and inversion sets that provide a geometrical

tool to study reduced words and lengths of elements. We then describe a poset

called the weak order in § 1.6 that is poset isomorphic to the inversion sets ordered

by inclusion. The weak order is the order that we extend to the facial weak order

in Chapter 2. Continuing this survey, we present the permutahedron in § 1.7, a

polytope that encodes the structure of a finite Coxeter group. Finally, in § 1.8,

we cover the notions of parabolic subgroups and their cosets and their relation

with the permutahedron. This chapter contains no proofs. For a more thorough

background on the topics covered in this chapter and for the proofs, the reader is

invited to consult the book “Reflection groups and Coxeter groups” (Humphreys,

1990), the book “Combinatorics of Coxeter groups” (Björner & Brenti, 2005) and

the book “Lie groups and Lie algebras: Chapters 4–6” (Bourbaki, 1968).
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p1

sv(p1)p2

sv(p2)

p3

sv(p3)

Hv

v

−v

Figure 1.1: A vector v with the reflection sv on the points p1, p2 and p3 and the

reflecting hyperplane Hv associated to v.

1.1 Finite reflection groups

Let (V, 〈·, ·〉) be an n-dimensional Euclidean space with positive definite symmetric

bilinear form 〈·, ·〉. For any vector v ∈ V \ {0}, let the linear operator sv denote

the reflection which interchanges v with −v and fixes pointwise the hyperplane Hv

orthogonal to v (see Figure 1.1 for an example). There is a simple formula for the

reflection sv given by the following equation:

sv(u) = u− 〈u, v〉
〈v, v〉

v.

Notice that sv(v) = −v and sv(u) = u for u ∈ Hv since 〈u, v〉 = 0.

A (finite) reflection group is a finite group W generated by a set of reflections

in the orthogonal group O(n). The classical examples of finite reflection groups

in the cases of dimension of V equal to 2 or 3 are the symmetry groups of the

ordinary regular polygons and regular polyhedra. We give as an example the

symmetry group of a (regular) equilateral triangle next.

Example 1.1.1 Consider an equilateral triangle and label its vertices by 1, 2

and 3 (see Figure 1.2). There are two reflections that will generate all possible

labellings of the triangle. These two reflections are given in Figure 1.2 on the first

triangle where the two dashed lines represent the hyperplanes associated to the two
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reflections. Reflecting over these two lines keeps the triangle invariant but changes

the labels. For example, reflecting the first labelled triangle over the vertical line

sends the first labelled triangle to the third one in Figure 1.2. Applying all possible

compositions of these two reflections one gets only six possible labellings of the

equilateral triangle (as seen in Figure 1.2). In fact, the group generated by these

two reflections is a finite reflection group of order 6, which will later be known

as the Coxeter group of type A2. This group is also known as the symmetric

group S3.

1 2

3

1 3

2

2 1

3

2 3

1

3 2

1

3 1

2

Figure 1.2: The symmetries of a triangle.

In 1934 Coxeter showed that finite reflection groups can be described using a

particular set of reflections, called simple reflections, together with a certain set

of relations.

Theorem 1.1.2 (Coxeter, 1934, Theorem 8) Every finite reflection group W has

a presentation by generators and relations of the form

W = 〈S | (st)ms,t = e, s, t ∈ S〉 ,

where S is a set of involutions, ms,t ∈ N≥2 if s 6= t and e is the identity element

of W .
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This presentation of finite reflection groups is named in honour of Coxeter and we

study this presentation in the following section.

1.2 Coxeter groups

A Coxeter group is a group generated by a finite set S of simple reflections with

the following presentation:

W = 〈S | (st)ms,t = e, s, t ∈ S〉

where ms,t ∈ N≥2 ∪ {∞} when s 6= t and ms,s = 1. Here e denotes the identity

of W and ms,t =∞ means that we impose no condition of the form (st)m = e.

The term “Coxeter group” is ambiguous; it is necessary to specify the set of simple

reflections generating the group. This is due to the fact that a group W could be

generated by various sets of simple reflections in the sense of the definition above.

For example, the dihedral group D6 of order 12 can be represented in either of

the two following presentations:
〈
{a, b} | a2 = b2 = (ab)6 = e

〉
and 〈

{x, y, z} | x2 = y2 = z2 = (xy)3 = (xz)2 = (yz)2 = e
〉
.

For this reason we say that a pair (W,S) is a Coxeter system, allowing us to

unambiguously know which set of simple reflections generate a Coxeter group.

When a Coxeter group W is finite it is called a finite Coxeter group. In fact,

finite Coxeter groups and finite reflection groups turn out to be the same, see for

instance (Humphreys, 1990, Theorem 6.4).

Theorem 1.2.1 A Coxeter group is finite if and only if it is a finite reflection

group.
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Rather than explicitly writing the presentation of a Coxeter group each time, it

is convenient to encode it combinatorially into a graph. Given a Coxeter system

(W,S), the Coxeter graph (or Coxeter diagram) is the partially (edge-)labelled

graph (S, V ) where the vertex set is the set S of simple reflections and a pair of

distinct simple reflections s and t share an edge if ms,t ≥ 3 which is labelled with

ms,t if ms,t ≥ 4 or ∞. Examples of Coxeter graphs can be found in Figure 1.3

where the label on the left of each graph is known as the type of the Coxeter group.

For a Coxeter system (W,S), the Coxeter group W is said to be irreducible if its

Coxeter graph is connected; if its Coxeter graph is not connected, then W is

said to be reducible and is the direct product of irreducible Coxeter groups (the

connected components).

Example 1.2.2 As an example we use the type H3 Coxeter group. From Fig-

ure 1.3 we can observe that the type H3 Coxeter group is given by the Coxeter

graph:

5
s1 s2 s3

From the Coxeter graph we deduce that S = {s1, s2, s3}. For the relations between

the simple reflections we use the edges. As there is an unlabelled edge between

the first two nodes we have (s1s2)3 = e. As there is an edge labelled 5 between

the second two nodes we have (s2s3)5 = e. Finally, since the first and last nodes

do not share an edge, these two elements commute, (s1s3)2 = e. All of this is

given in the presentation for W :

W =
〈
{s1, s2, s3} | (s1)2 = (s2)2 = (s3)2 = (s1s2)3 = (s1s3)2 = (s2s3)5 = e

〉
.

As can be observed, using Coxeter graphs and types makes referring to Coxeter

groups significantly easier.
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An (n ≥ 1)
s1 s2 s3 sn−2 sn−1 sn

Bn (n ≥ 2)
s1 s2 s3 sn−2 sn−1 sn

4

Dn (n ≥ 4)
s1 s2 s3 sn−3 sn−2

sn

sn−1
E6 s1 s2 s3 s4 s5

s6

E7 s1 s2 s3 s4 s5 s6

s7

E8 s1 s2 s3 s4 s5 s6 s7

s8

F4 s1 s2 s3 s4

4

H3 s1 s2 s3

5

H4 s1 s2 s3 s4

5

I2(m)
s1 s2

m

Figure 1.3: All irreducible finite Coxeter groups labelled with their type to the

left. The index of the type refers to the number of nodes in the graph, i.e., the

number of simple reflections. Note that the type An Coxeter groups are also known

as the symmetric groups Sn+1. Additionally, the type I2(m) Coxeter groups are

the dihedral groups Dm of order 2m.
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In fact, thanks to the notion of Coxeter graphs, we have the following theorem on

the classification of irreducible finite Coxeter groups.

Theorem 1.2.3 (Coxeter, 1935, Theorem 1) The only irreducible finite Coxeter

groups are those with Coxeter graphs in Figure 1.3.

Therefore, by Theorem 1.2.1, every finite reflection group can be represented by

a Coxeter graph as well. In the next section we detail how to represent a finite

Coxeter group as a finite reflection group.

1.3 Geometric representation of Coxeter groups

In this section we describe the classical geometric representation of finite Coxeter

groups as finite reflection groups due to Tits. Let (W,S) be a Coxeter system

with W finite. We start with a real vector space V with basis ∆ = {αs | s ∈ S}.

We impose a geometry on V in order to replicate “angles” between the vectors

in ∆. To this end we define a symmetric bilinear form on the simple reflections

such that for s, t ∈ S we associate the angle between αs and αt with ms,t, the

order of s and t:

B(αs, αt) = − cos
(

π

ms,t

)
.

In this case, since ms,s = 1, we have B(αs, αs) = − cos (π) = 1. In the case

that ms,t =∞ we set B(αs, αt) = −1. For s ∈ S, the reflection σαs : V → V is

the linear map:

σαs(v) = v − 2B(v, αs)αs, for all v ∈ V.

With the vector space V , the form B and the linear maps σα we have the following

proposition, see for instance (Humphreys, 1990, Proposition 5.3, Corollary 5.4,

Theorem 6.4).



18

Theorem 1.3.1 The linear representation σ : W → GL(V ) sending s to σαs is

faithful, σ(W ) ∼= W and σ(W ) preserves the form B on V . Moreover, W is finite

if and only if B is a positive-definite symmetric bilinear form

The homomorphism σ is called the geometric representation of the Coxeter sys-

tem (W,S). This representation is of great interest for understanding the elements

of w written as words on S, as we explain now.

1.4 Length and reduced words

We return to the study of a Coxeter system (W,S). Since W is generated by the

set of simple reflections S, the elements of W can be written as words over the

alphabet S, i.e., w can be written as a product of simple reflections in S. The

length `(w) of an element w ∈ W is then the minimal length of the words for w

as a product of generators in S:

`(w) = min {n | w = s1s2 . . . sn, si ∈ S} .

Given a word w = s1s2 · · · sk for w ∈ W and si ∈ S, we say s1s2 · · · sk is a reduced

word of w (or simply reduced1) if k = `(w).

Although reduced words for a given element w must exist, they are not in general

unique. As an example, let W be the type A2 Coxeter group with simple reflec-

tions S = {s, t} such that (st)3 = e. One observes that the relation (st)3 = e

can be rewritten by multiplying both sides by simple reflections (using the rela-

tions s2 = e for all s ∈ S) until the length of the word on either side of the equality

1In the literature, this is also referred to as a reduced expression.
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is the same. Relations of the form sts . . . = tst . . ., with ms,t simple reflections on

both sides, are known as braid relations. The braid relation sts = tst implies that

sts and tst are both two different reduced words of the same element in W .

Example 1.4.1 Let S = {s1, s2, s3, s4} be the simple reflections for the A4

Coxeter group. Recall that we have the relations:

(si)2 = (s1s2)3 = (s1s3)2 = (s1s4)2 = (s2s3)3 = (s2s4)2 = (s3s4)3 = e

which can be deduced from the Coxeter graph of the type A4 Coxeter group in

Figure 1.3. To find a reduced word for w ∈ W we can use our relations to reduce

the number of elements in the word. For instance, let w = s1s2s4s2s3s4s3s4s1. We

aim to find a reduced word for w.

w = s1s2s4s2s3s4s3s4s1 (s4s2 = s2s4)

= s1s2s2s4s3s4s3s4s1 (s2s2 = e)

= s1s4s3s4s3s4s1 (s3s4s3 = s4s3s4)

= s1s4s4s3s4s4s1 (s4s4 = e)

= s1s3s1 (s3s1 = s1s3)

= s1s1s3 (s1s1 = e)

= s3.

The relations on the right of the equations above are the relations used to go

from one word to the next. In our case, since w = s1s2s4s2s3s4s3s4s1 = s3,

then `(w) = 1 and w = s3 is a reduced word for w.

Although we can use our relations to find a reduced expression of a given word,

there is an easier way to find reduced expressions: using the geometric represen-

tation, which we present in the next section.
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1.5 Root systems, reflections and inversion sets

In this section we survey root systems, which will be used to give an efficient way

to compute the length of a word w in W .

Given a Coxeter system (W,S), we associate a root system Φ to (W,S) by tak-

ing ∆ = {αs | s ∈ S} and generating Φ by acting on ∆ by W :

Φ = W (∆) = {w(α) | w ∈ W and α ∈ ∆} .

An example of a root system associated to the type A2 Coxeter group is given

in Figure 1.4. The elements in Φ are known as roots and we call the elements

in ∆ simple roots. The root system is split into positive roots Φ+ and negative

roots Φ− = −Φ+, by setting Φ+ = cone(∆) ∩ Φ where cone is defined as in § 1.7.

It turns out that each positive root in Φ+ is associated to a reflection in

T =
{
wsw−1 | w ∈ W, s ∈ S

}
.

See for instance (Björner & Brenti, 2005, Proposition 4.4.5).

Proposition 1.5.1 The map ρ : Φ+ → T where ρ (w (αs)) = wsw−1 for w ∈ W

and s ∈ S is well-defined and is a bijection.

We call T the set of reflections. By this proposition, for each α ∈ Φ+ there is a

reflection tα ∈ T associated to α and for each t = wsw−1 ∈ T there is an αt ∈ Φ+

associated to t where αt = w(αs) if w(αs) ∈ Φ+ and αt = −w(αs) otherwise.

Example 1.5.2 Let W be a Coxeter group of type A2. We know that A2 is

the Coxeter group with two generators S = {s, t} such that (st)3 = e which

can be deduced from Figure 1.3. The group W turns out to have order 6 with el-

ements {e, s, t, st, ts, sts} and three reflections T = {s, t, sts}. The root system as-

sociated toW is given by Φ = {±αs,±αt,±αsts} where αsts = s(αt) = t(αs) = αs + αt.
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−αs

−αsts
−αt

αs

αsts

αt

cone(∆)

HαtHαs

Hαsts

Figure 1.4: The root system associated to the type A2 Coxeter group. The

simple roots are given by ∆ = {αs, αt} and the positive roots are given

by Φ+ = {αs, αt, αsts} = cone(∆) ∩ Φ.

We observe this in Figure 1.4 where we can also observe that the set Φ decomposes

into a set of positive roots (contained in cone(∆)) and a set of negative roots.

We now use the root system Φ to compute the length of w ∈ W . The inversion

set of an element w ∈ W is the set N(w) := Φ+ ∩ w (Φ−), which is the set of the

positive roots that are sent to negatives roots by w−1. If w = uv = s1s2 · · · sk is

reduced with u = s1 · · · si and v = si+1 · · · sk for some i, then N(w) turns out to

be:

N(w) = N(u) t u (N(v)) = {αs1 , s1 (αs2) , . . . , s1s2 · · · sk−1 (αsk
)} .

In particular, we have the following proposition, see for instance (Humphreys,

1990, Corollary 1.7).

Proposition 1.5.3 For any element w ∈ W , the number of roots in the inversion

set of w is the length of w, i.e., `(w) = |N(w)|.
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IfW is finite, then it can be observed that there is always some element that sends

every positive root to a negative one. We call this element the longest element

and denote it by w◦. In fact, we have the following equalities

`(w◦) = |N(w◦)| = |Φ+| = |T |.

Example 1.5.4 We continue with the type A2 Coxeter group whose root system

can be found in Figure 1.4. We find the inversion set N(st). To do this, we

start with Φ− = {−αs,−αt,−αsts} and reflect by st. First, we reflect over Hαt to

get t(Φ−):

t(Φ−) = {t(−αs), t(−αt), t(−αsts)} = {−αsts, αt, −αs} .

Next, we reflect over Hαs to get st(Φ−):

st(Φ−) = s
(
t(Φ−)

)
= {s(−αsts), s(αt), s(−αs)} = {−αt, αsts, αs} .

Then

N(st) = Φ+ ∩ st(Φ−) = Φ+ ∩ {−αt, αsts, αs} = {αsts, αs} .

As we can observe, `(st) = |N(st)| = 2.

Computing the inversion set for every element in the same way, we get:

N(e) = ∅ N(t) = {αt} N(ts) = {αt, αsts}

N(s) = {αs} N(st) = {αs, αsts} N(sts) = {αs, αt, αsts} = Φ+.

Notice that N(w◦) = N(sts) = Φ+. The inversion sets ordered by inclusion are

found in Figure 1.5.

We next survey a combinatorial description of the poset of inversion sets ordered

by inclusion.
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∅

{αs} {αt}

{αs, αsts} {αt, αsts}

{αs, αt, αsts} = Φ+

Figure 1.5: The inversion sets of the type A2 Coxeter group ordered by inclusion.

1.6 Weak order

In this section we survey the (right) weak order on a Coxeter system (W,S) which

is a combinatorial interpretation of the poset of inversion sets ordered by inclusion.

For a background on orders, posets or lattices, the reader is invited to read the

brief introduction provided in Appendix A.

An element u is a prefix of v if there exists some reduced word for u that is a

prefix of some reduced word for v, i.e., `(u−1v) = `(v) − `(u). A suffix of v is

defined similarly, i.e., `(vu−1) = `(v)− `(u). The right weak order is the order ≤R
on W such that for u, v ∈ W ,

u ≤R v ⇐⇒ u is a prefix of v.

The left weak order is defined similarly with suffixes instead of prefixes. Since we

exclusively use the right weak order we will say weak order when referring to the

right weak order.

Example 1.6.1 An example of the weak order can be found in Figure 1.6 for

the types A2 and B2 Coxeter groups. Notice that in both these Coxeter groups

the element s and the element ts are incomparable. This is because there is no

reduced word of ts which begins with s.
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e

s t

st ts

sts = w◦

e

s t

st ts

sts tst

stst = w◦

Figure 1.6: The weak order for the types A2 and B2 Coxeter groups.

Example 1.6.2 As another example, let u = s1 and v = s2s1s2 in the type A3

Coxeter group with S = {s1, s2, s3}. We might assume that u is not a prefix of v

since s2s1s2 does not begin with s1 = u and s2s1s2 is a reduced word for v. But

our definition says that u can be a prefix of any reduced word of v. Recalling that

we have the braid relation s2s1s2 = s1s2s1 then s1s2s1 is another reduced word of

v and is one which has u = s1 as a prefix. Therefore u ≤R v in the weak order.

In 1984 Björner stated that the weak order (W,≤R) is a lattice for any finite

Coxeter group and a meet-semilattice for any Coxeter group.

Theorem 1.6.3 (Björner, 1984, Theorem 8) The weak order of a Coxeter

group W is a meet-semilattice. Furthermore, if W is finite, then the weak or-

der is a lattice.

A proof of this fact can be found in (Björner et al., 1990).

The poset of inversion sets ordered by inclusion turns out to be isomorphic with
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the weak order poset. This is a classical result from (Björner, 1984, Proposition

2), see for instance the discussion and references within (Hohlweg & Labbé, 2016).

Proposition 1.6.4 Let B = {N(w) | w ∈ W} be the set of all inversion sets

for a finite Coxeter group W . Then the map (W,≤R) → (B,⊆) is a poset iso-

morphism. In other words, for u, v ∈ W , u ≤R v if and only if N(u) ⊆ N(v).

As an example, one can compare the inversion sets ordered by inclusion in Fig-

ure 1.5 with the weak order on the left in Figure 1.6. By this result, for W finite,

the longest element w◦ is the top element in the weak order and is the element

of maximal length in W . The weak order has a geometric interpretation as the

1-skeleton of a polytope named the permutahedron, which we study in the next

section.

1.7 Permutahedron

Let (W,S) be a Coxeter system. In this section we study the W -permutahedron,

a polytope that is generated by the action of W on a point.

Recall that, given a real vector space V , a polytope P is the convex hull of finitely

many points of V or, equivalently, the bounded intersection of finitely many affine

halfspaces of V . The faces FP of a polytope P (or simply F if there is no

ambiguity) is the set of intersections of P with its supporting hyperplanes. The

faces of dimension 0 are called vertices and the faces of codimension 1 are called

facets. The face lattice (FP ,⊆) of P is the lattice where the faces FP are ordered

by inclusion giving us a way to encode the relationship between the faces of a

polytope. As the name implies, this partial order is a lattice with the polytope

itself as the top element, the empty face as the bottom element, the vertices of

the polytope as the atoms and the facets as the coatoms.
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ab

c d

Figure 1.7: The square on the left is the polytope which is acquired by taking the

convex hull of the four points {a, b, c, d}. On the right is the face lattice associated

to the square.

Example 1.7.1 An example of a polytope is given in Figure 1.7. Let P be the

polytope on the left in Figure 1.7 which is the convex hull of the four points {a, b, c, d}

in Figure 1.7. On the right hand side of Figure 1.7 is the face lattice associated

to the faces of P . The bottom element in the face lattice is the empty set, the

first row contains the vertices, the second row contains the edges and the row on

top in the face lattice represents the square itself.

Given a finite Coxeter system (W,S) action on the vector space V as described

in § 1.3, the W -permutahedron is the convex hull of the orbit under W of some

generic point v ∈ V . Here generic means that v is not contained on any reflection

hyperplane of W . The W -permutahedron is given by:

Permv(W ) = conv {w(v) | w ∈ W} .

Example 1.7.2 An example of the W -permutahedron in type A2 is given in

Figure 1.8 where the point v has been reflected over the three hyperplanes. The

hexagon is then the convex hull of the six points produced under this W -action.

The face lattice of the W -permutahedron is given in Figure 1.9, where the atoms

are the 6 vertices and the coatoms are the 6 edges.
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ts(v)

sts(v)

st(v)

s(v)

v

t(v)

HαsHαt

Hαsts

Figure 1.8: The W -permutahedron Permv(W ) of a generic point v ∈ V for the

Coxeter group of type A2.

Figure 1.9: The face lattice (F ,⊆) of the W -permutahedron of the type A2

Coxeter group W .

Recall that a cone cone(Y ) generated by a nonempty set of vectors Y ⊆ V is the

set of all finite nonnegative linear combinations of vectors of Y , i.e.,

cone(Y ) = {λ1v1 + λ2v2 + · · ·+ λkvk | λi ∈ R≥0, vi ∈ Y, k ≥ 1}

For a face F ∈ F of a polytope P , the inner primal cone of F is the cone generated

by {u− v | u ∈ P, v ∈ F}. The inner primal cone is the cone at the face F with

vectors pointing “inside” the polytope P . The outer normal cone of F is the cone

generated by the outer normal vectors of the facets of P which contain F . These
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Figure 1.10: For the W -permutahedron of type A2, the figure on the left is the

inner primal cones of each face and on the right is the outer normal cones of each

face.

two cones are particularly interesting as they are polar to one another. For a

cone C, the polar cone is given by:

C
� = {u ∈ V ? | 〈u, v〉 ≤ 0 for all v ∈ C} .

Example 1.7.3 Consider the type A2 Coxeter group W and let Permv(W ) be

its associated W -permutahedron as in Figure 1.8. The inner primal cones and the

outer normal cones of Permv(W ) are given in Figure 1.10. The inner primal cones

(left) are the cones at each face which go towards the inside of the polytope. On

the other hand, the outer normal cones (right) are the cones which are generated

by the normal vectors to the hyperplanes supporting each face.

1.8 Parabolic subgroups and cosets

Given a finite Coxeter system (W,S), the faces of theW -permutahedron encode an

important class of subgroups of W and their cosets: the set of standard parabolic
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cosets associated to standard parabolic subgroups of W .

Notice that any subset I of S generates another Coxeter group WI with simple

roots ∆I := {αs | s ∈ I}, root system ΦI = WI (∆I) and longest element w◦,I . We

call WI = 〈I〉 a standard parabolic subgroup of W . See for instance (Humphreys,

1990, Theorems 1.10 and 5.5).

Theorem 1.8.1 For (W,S) a Coxeter system and I ⊆ S. Let WI = 〈I〉 and

∆I = {αs | s ∈ I} ⊆ ∆. Then (WI , I) is a Coxeter system and ΦI , the inter-

section of Φ with the R-span of ∆I , is a root system. Furthermore, the length

function `I of WI is the same length function as in W , i.e., `I = `.

Another way to describe WI is to start with the Coxeter graph of W and restrict

it to the subgraph with vertex set I; giving the Coxeter graph to the group WI .

As extreme examples W∅ = {e} and WS = W .

Example 1.8.2 Let S = {s1, s2, s3} be the set of simple reflections for the

Coxeter group W of type A3 whose Coxeter graph is given by:

s1 s2 s3

Then S ′ = {s1, s2} generates

WS′ =
〈
S ′ | (s1)2 = (s2)2 = (s1s2)3 = e

〉
,

which is a Coxeter group of type A2 whose Coxeter graph is given by:

s1 s2

Letting S ′′ = {s1, s3}, then S ′′ generates

WS′′ =
〈
S ′′ | (s1)2 = (s3)2 = (s1s3)2 = e

〉
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which is a Coxeter group of type A1 × A1 whose Coxeter graph is given by:

s1 s3

To describe the cosets of a standard parabolic subgroup, we consider the set

W I := {w ∈ W | `(ws) > `(w) for all s ∈ I} .

For the subgroups W∅ = {e} and WS = W we have W∅ = W and W S = {e}

respectively. In fact, given any standard parabolic subgroup WI and any ele-

ment w ∈ W , then w has a unique factorization relative to WI , see for instance

(Björner & Brenti, 2005, Proposition 2.4.4).

Proposition 1.8.3 Let I ⊆ S, then for every w ∈ W , w has a unique factoriza-

tion w = wI ·wI where wI ∈ W I and wI ∈ WI . Furthermore, `(w) = `(wI)+`(wI).

In particular, W/WI and W I are in bijection.

Therefore,W I is the set ofminimal length coset representatives of the cosetW/WI .

A standard parabolic coset is a coset of the form xWI with x ∈ W I . Any

standard parabolic coset xWI forms an interval [x, xw◦,I ]R in the weak order,

since `(w) = `(wI) + `(wI). We call these intervals facial intervals associated to

the standard parabolic cosets in W/WI .

Example 1.8.4 For the A2 Coxeter groupW we have S = {s, t}. There are four

standard parabolic subgroups for S: W∅, W{s}, W{t} and WS.

For WS, since WS = W the only coset representative is e. Notice that since WS

contains every element, it is represented by the facial interval [e, w◦]R which is the

entire weak order.

For W{s}, there are only three (minimal length)coset representatives that we can

have, W {s} = {e, t, st}. Since W{s} contains two elements (e and s), the facial
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intervals we get for each coset are:

eW{s} ↔ [e, s]R tW{s} ↔ [t, ts]R stW{s} ↔ [st, sts]R.

It can be observed that we get similar results with W{t}.

The subgroup W∅ contains the unique element e, i.e., W∅ = {e}. Therefore every

element of the group W will be a minimal coset representative and the facial

intervals associated to each coset will be the singletons: [e, e]R, [s, s]R, [t, t]R,

[st, st]R, [ts, ts]R and [sts, sts]R.

Let PW denote the set of all standard parabolic cosets:

PW =
{
xWI | I ⊆ S, x ∈ W I

}
.

The set PW is called the Coxeter complex of W . To each standard parabolic coset

in PW we can associate a face of the W -permutahedron through the bijective

map F : PW → Permv(W ) where F(xWI) = x (Permv(WI)) = Permx(v)(xWIx
−1).

Therefore each k-dimensional face of Permv(W ) is associated to a standard parabolic

coset xWI with |I| = k. Examples in types A2 and B2 are given in Figure 1.11.
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F(Ws) F(Wt)

F(sWt) F(tWs)

F(stWs) F(tsWt)

F(e)

F(s) F(t)

F(st) F(ts)

F(sts)

F(W )

F(Ws) F(Wt)

F(sWt) F(tWs)

F(stWs) F(tsWt)

F(stsWt) F(tstWs)

F(e)

F(s) F(t)

F(st) F(ts)

F(sts) F(tst)

F(stst)

F(W )

Figure 1.11: Standard parabolic cosets of the type A2 and B2 Coxeter groups and

the corresponding faces on their permutahedra.



CHAPTER II

THE FACIAL WEAK ORDER AND ITS LATTICE QUOTIENTS

The text in this chapter was published in Transactions of the American Math-

ematical Society in 2018 and was written by myself, Christophe Hohlweg and

Vincent Pilaud.

The (right) Cayley graph of a Coxeter system (W,S) is naturally oriented by

the (right) weak order on W : an edge is oriented from w to ws if s ∈ S is

such that `(w) < `(ws), see (Björner & Brenti, 2005, Chapter 3) for details. A

celebrated result of A. Björner (Björner, 1984) states that the weak order is a

complete meet-semilattice and even a complete ortholattice in the case of a finite

Coxeter system. The weak order is a very useful tool to study Coxeter groups

as it encodes the combinatorics of reduced words associated to (W,S), and it

underlines the connection between the words and the root system via the notion

of inversion sets, see for instance (Dyer, 2011; Hohlweg & Labbé, 2016) and the

references therein.

In the case of a finite Coxeter system, the Cayley graph ofW is isomorphic to the 1-

skeleton of theW -permutahedron. Then the weak order is given by an orientation

of the 1-skeleton of theW -permutahedron associated to the choice of a linear form

of the ambient Euclidean space. This point of view was very useful in order to

build generalized associahedra out of a W -permutahedron using N. Reading’s

Cambrian lattices, see (Reading, 2012; Hohlweg et al., 2011; Hohlweg, 2012a).
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In this paper, we study a poset structure on all faces of the W -permutahedron

that we call the (right) facial weak order . This order was introduced by D. Krob,

M. Latapy, J.-C. Novelli, H.-D. Phan and S. Schwer in (Krob et al., 2001) for

the symmetric group then extended by P. Palacios and M. Ronco in (Palacios

& Ronco, 2006) for arbitrary finite Coxeter groups. Recall that the faces of the

W -permutahedron are naturally parameterized by the Coxeter complex PW which

consists of all standard parabolic cosets W/WI for I ⊆ S. The aims of this article

are:

(1) To give two alternative characterizations of the facial weak order (see The-

orem (2.2.14)): one in terms of root inversion sets of parabolic cosets which

extend the notion of inversion sets of elements of W , and the other one as

the subposet of the poset of intervals of the weak order induced by the stan-

dard parabolic cosets. The advantage of these two definitions is that they

give immediate global comparison, while the original definition of (Palacios

& Ronco, 2006) uses cover relations.

(2) To show that the facial weak order is a lattice (see Theorem (2.2.19)), whose

restriction to the vertices of the permutahedron produces the weak order as

a sublattice. This result was motivated by the special case of type A proved

in (Krob et al., 2001).

(3) To discuss generalizations of these statements to infinite Coxeter groups via

the Davis complex (see Theorem (2.2.30)).

(4) To show that any lattice congruence ≡ of the weak order naturally extends

to a lattice congruence of the facial weak order (see Theorem (2.3.11)).

This provides a complete description (see Theorem (2.3.22)) of the fan F≡
associated to the weak order congruence ≡ in N. Reading’s work (Reading,

2005): while the classes of ≡ correspond to maximal cones in F≡, the classes
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of correspond to all cones in F≡. Relevant illustrations are given for

Cambrian lattices and fans (Reading, 2006; Reading & Speyer, 2009), which

extend to facial Cambrian lattices on the faces of generalized associahedra

(see Theorem (2.3.30)).

The results of this paper are based on combinatorial properties of Coxeter groups,

parabolic cosets, and reduced words. However, their motivation and intuition

come from the geometry of the Coxeter arrangement and of theW -permutahedron.

We made a point to introduce enough of the geometrical material to make the

geometric intuition clear.

2.1 Preliminaries

We start by fixing notations and classical definitions on finite Coxeter groups.

Details can be found in textbooks by J. Humphreys (Humphreys, 1990) and

A. Björner and F. Brenti (Björner & Brenti, 2005). The reader familiar with finite

Coxeter groups and root systems is invited to proceed directly to Section (2.2).

2.1.1 Finite reflection groups and Coxeter systems

Let (V, 〈 · | · 〉) be an n-dimensional Euclidean vector space. For any vector v ∈ V r {0},

we denote by sv the reflection interchanging v and −v while fixing the orthogonal

hyperplane pointwise. Remember that wsv = sw(v)w for any vector v ∈ V r {0}

and any orthogonal transformation w of V .

We consider a finite reflection group W acting on V , that is, a finite group gener-

ated by reflections in the orthogonal group O(V ). The Coxeter arrangement ofW

is the collection of all reflecting hyperplanes. Its complement in V is a union of

open polyhedral cones. Their closures are called chambers. The Coxeter fan is
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the polyhedral fan formed by the chambers together with all their faces. This

fan is complete (its cones cover V ) and simplicial (all cones are simplicial), and

we can assume without loss of generality that it is essential (the intersection of

all chambers is reduced to the origin). We fix an arbitrary chamber C which we

call the fundamental chamber . The n reflections orthogonal to the facet defining

hyperplanes of C are called simple reflections. The set S of simple reflections

generates W . The set of reflections is the set T = {wsw−1 | w ∈ W and s ∈ S}.

The pair (W,S) forms a Coxeter system. See Figure (2.1) for an illustration of

the Coxeter arrangements of types A3, B3, and H3.

2.1.2 Roots and weights

We consider a root system Φ forW , i.e., a set of vectors invariant under the action

of W and containing precisely two opposite roots orthogonal to each reflecting

hyperplane of W . The simple roots ∆ are the roots orthogonal to the defining

hyperplanes of C and pointing towards C. They form a linear basis of V . The

root system Φ splits into the positive roots Φ+ := Φ ∩ cone(∆) and the negative

Figure 2.1: The type A3, B3, and H3 Coxeter arrangements.
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roots Φ− := Φ∩ cone(−∆) = −Φ+, where cone(X) denotes the set of nonnegative

linear combinations of vectors in X ⊆ V . In other words, the positive roots are

the roots whose scalar product with any vector of the interior of the fundamental

chamber C is positive, and the simple roots form the basis of the cone generated

by Φ+. Each reflecting hyperplane is orthogonal to one positive and one negative

root. For a reflection s ∈ T , we set αs to be the unique positive root orthogonal

to the reflecting hyperplane of s, i.e., such that s = sαs .

We denote by α∨s := 2αs/〈αs | αs 〉 the coroot corresponding to αs ∈ ∆, and by

∆∨ := {α∨s | s ∈ S} the coroot basis. The vectors of its dual basis∇ := {ωs | s ∈ S}

are called fundamental weights. In other words, the fundamental weights of W

are defined by 〈α∨s | ωt 〉 = δs=t for all s, t ∈ S. Geometrically, the fundamental

weight ωs gives the direction of the ray of the fundamental chamber C not con-

tained in the reflecting hyperplane of s. We let Ω :=W (∇) = {w(ωs) | w ∈ W, s ∈ S}

denote the set of all weights ofW , obtained as the orbit of the fundamental weights

under W .

2.1.3 Length, reduced words and weak order

The length `(w) of an element w ∈ W is the length of the smallest word for w as

a product of generators in S. A word w = s1 · · · sk with s1, . . . , sk ∈ S is called

reduced if k = `(w). For u, v ∈ W , the product uv is said to be reduced if the

concatenation of a reduced word for u and of a reduced word for v is a reduced

word for uv, i.e., if `(uv) = `(u) + `(v). We say that u ∈ W is a prefix of

v ∈ W if there is a reduced word for u that is the prefix of a reduced word for v,

i.e., if `(u−1v) = `(v)− `(u).
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The (right) weak order is the order on W defined equivalently by

u ≤ v ⇐⇒ `(u) + `(u−1v) = `(v) ⇐⇒ u is a prefix of v.

A. Björner shows in (Björner, 1984) that the weak order defines a lattice structure

on W (finite Coxeter group), with minimal element e and maximal element w◦
(which sends all positive roots to negative ones and all positive simple roots to

negative simple ones). The conjugation w 7→ w◦ww◦ defines a weak order auto-

morphism while the left and right multiplications w 7→ w◦w and w 7→ ww◦ define

weak order anti-automorphisms. We refer the reader to (Björner & Brenti, 2005,

Chapter 3) for more details.

The weak order encodes the combinatorics of reduced words and enjoys a useful

geometric characterization within the root system, which we explain now. The

(left) inversion set of w is the set N(w) := Φ+ ∩ w(Φ−) of positive roots sent to

negative ones by w−1. If w = uv is reduced then N(w) = N(u) t u
(

N(v)
)
. In

particular, we have N(w) =
{
αs1 , s1(αs2), . . . , s1s2 · · · sk−1(αsk

)
}
for any reduced

word w = s1 · · · sk, and therefore `(w) = |N(w)|. Moreover, the weak order is

characterized in term of inversion sets by:

u ≤ v ⇐⇒ N(u) ⊆ N(v),

for any u, v ∈ W . We refer the reader to (Hohlweg & Labbé, 2016, Section 2) and

the references therein for more details on inversion sets and the weak order.

We say that s ∈ S is a left ascent of w ∈ W if `(sw) = `(w) + 1 and a left descent

of w if `(sw) = `(w)− 1. We denote by DL(w) the set of left descents of w. Note

that for s ∈ S and w ∈ W , we have s ∈ DL(w) ⇐⇒ αs ∈ N(w) ⇐⇒ s ≤ w.

Similarly, s ∈ S is a right descent of w ∈ W if `(ws) = `(w)− 1, and we denote

by DR(w) the set of right descents of w.
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2.1.4 Parabolic subgroups and cosets

Consider a subset I ⊆ S. The standard parabolic subgroup WI is the subgroup

of W generated by I. It is also a Coxeter group with simple generators I, simple

roots ∆I := {αs | s ∈ I}, root system ΦI = WI(∆I) = Φ ∩ span(∆I), length func-

tion `I = `|WI
, longest element w◦,I , etc. For example, W∅ = {e} while WS = W .

We denote by W I := {w ∈ W | `(ws) > `(w) for all s ∈ I} the set of elements

of W with no right descents in I. For example, W∅ = W while W S = {e}.

Observe that for any x ∈ W I , we have x(∆I) ⊆ Φ+ and thus x(Φ+
I ) ⊆ Φ+. We

will use this property repeatedly in this paper.

Any element w ∈ W admits a unique factorization w = wI · wI with wI ∈ W I

and wI ∈ WI , and moreover, `(w) = `(wI) + `(wI) (see (Björner & Brenti, 2005,

Proposition 2.4.4)). Therefore, W I is the set of minimal length coset represen-

tatives of the cosets W/WI . Throughout the paper, we will always implicitly

assume that x ∈ W I when writing that xWI is a standard parabolic coset. Note

that any standard parabolic coset xWI = [x, xw◦,I ] is an interval in the weak

order. The Coxeter complex PW is the simplicial complex whose faces are all

standard parabolic cosets of W

PW =
⋃
I⊆S

W/WI =
{
xWI | I ⊆ S, x ∈ W

}
=
{
xWI | I ⊆ S, x ∈ W I

}

We will also need Deodhar’s Lemma: for s ∈ S, I ⊆ S and x ∈ W I , either sx ∈ W I

or sx = xr for some r ∈ I. See for instance (Geck & Pfeiffer, 2000, Lemma 2.1.2)

where it is stated for the cosets WI\W instead of W/WI .
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2.1.5 Permutahedron

Remember that a polytope P is the convex hull of finitely many points of V , or

equivalently a bounded intersection of finitely many affine halfspaces of V . The

faces of P are the intersections of P with its supporting hyperplanes and the face

lattice of P is the lattice of its faces ordered by inclusion. The inner primal cone of

a face F of P is the cone generated by {u− v | u ∈ P, v ∈ F}. The outer normal

cone of a face F of P is the cone generated by the outer normal vectors of the

facets of P containing F . Note that these two cones are polar to each other. The

normal fan is the complete polyhedral fan formed by the outer normal cones of all

faces of P . We refer to (Ziegler, 1995) for details on polytopes, cones, and fans.

The W -permutahedron Permp(W ) is the convex hull of the orbit under W of a

generic point p ∈ V (not located on any reflection hyperplane of W ). Its vertex

and facet descriptions are given by

Permp(W ) = conv
{
w(p) | w ∈ W

}
=

⋂
s∈S
w∈W

{
v ∈ V | 〈w(ωs) | v 〉 ≤ 〈ωs | p 〉

}
.

Examples in types A2 and B2 are represented in Figure (2.2). Examples in

types A3, B3, and H3 are represented in Figure (2.3).

We often write Perm(W ) instead of Permp(W ) as the combinatorics of the W -

permutahedron is independent of the choice of the point p and is encoded by

the Coxeter complex PW . More precisely, each standard parabolic coset xWI

corresponds to a face F(xWI) of Permp(W ) given by

F(xWI) = x
(
Permp(WI)

)
= Permx(p)

(
xWIx

−1
)
.

Therefore, the k-dimensional faces of Permp(W ) correspond to the cosets xWI

with |I| = k and the face lattice of Permp(W ) is isomorphic to the inclusion

poset (PW ,⊆). The normal fan of Permp(W ) is the Coxeter fan. The graph of
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Figure 2.2: Standard parabolic cosets of the type A2 and B2 Coxeter groups and

the corresponding faces on their permutahedra.

Figure 2.3: The type A3, B3, and H3 permutahedra.
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the permutahedron Permp(W ) is isomorphic to the Cayley graph of the Coxeter

system (W,S). Moreover, when oriented in the linear direction w◦(p) − p, it

coincides with the Hasse diagram of the (right) weak order on W . We refer the

reader to (Hohlweg, 2012a) for more details on the W -permutahedron.

Example 2.1.1 The Coxeter group of type An−1 is the symmetric group Sn.

Its simple generators are the simple transpositions τi = (i i + 1) for i ∈ [n − 1]

with relations τ 2
i = 1 and τiτi+1τi = τi+1τiτi+1. Its elements are permutations

of [n] and its standard parabolic cosets are ordered partitions of [n]. A root sys-

tem for Sn consists in the set of vectors {ei − ej | i 6= j ∈ [n]} where (e1, . . . , en)

is the canonical basis of Rn. Note that, this construction does not give us an

essential Coxeter fan. The type A3 Coxeter arrangement is represented in Fig-

ure (2.1) (left), and the type A2 and A3 permutahedra are represented in Fig-

ures (2.2) (left) and (2.3) (left).

2.2 Facial weak order

In this section we study an analogue of the weak order on standard parabolic

cosets. Note that the set I(P ) := {[x,X] | x,X ∈ P, x ≤ X} of all intervals of a

poset P is itself ordered by [x,X] ≤ [y, Y ] ⇐⇒ x ≤ y and X ≤ Y . As particular

intervals of the weak order, the standard parabolic cosets are thus naturally or-

dered by restriction of the poset of intervals of the weak order: xWI ≤ yWJ ⇐⇒ x ≤ y

and xw◦,I ≤ yw◦,J . We first give two equivalent descriptions of this order (see

Section (2.2.3)): the first one, in terms of cover relations, was originally studied

in (Krob et al., 2001; Palacios & Ronco, 2006) (see Section (2.2.1)), while the

second one generalizes the characterization of the weak order in terms of inver-

sion sets (see Section (2.2.2)). We then use these characterizations to prove that

this poset is in fact a lattice (see Section (2.2.4)) and to study some of its order

theoretic properties (see Section (2.2.5)).
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2.2.1 Original definition by cover relations

We start from the original definition in terms of cover relations, which was given

for the symmetric group by D. Krob, M. Latapy, J.-C. Novelli, H.-D. Phan and

S. Schwer in (Krob et al., 2001), then extended for arbitrary finite Coxeter groups

by P. Palacios and M. Ronco in (Palacios & Ronco, 2006).

Definition 2.2.1 ((Krob et al., 2001; Palacios & Ronco, 2006)) The (right) facial

weak order is the order ≤ on the Coxeter complex PW defined by cover relations

of two types:

(1) xWI <· xWI∪{s} if s /∈ I and x ∈ W I∪{s},

(2) xWI <· xw◦,Iw◦,Ir{s}WIr{s} if s ∈ I,

where I ⊆ S and x ∈ W I .

We have illustrated the facial weak order on the faces of the permutahedron in

types A2 and B2 in Figure (2.4) and in type A3 in Figure (2.5).

Remark 2.2.2 (1) These cover relations translate to the following geometric

conditions on faces of the permutahedron Perm(W ): a face F is covered by

a face G if and only if either F is a facet of G with the same weak order

minimum, or G is a facet of F with the same weak order maximum.

(2) Consider the natural inclusion x 7→ xW∅ fromW to PW . For x <· xs in weak

order, we have xW∅ <· xW{s} <· xsW∅ in facial weak order. By transitivity,

all relations in the classical weak order are thus relations in the facial weak

order. Although it is not obvious at first sight from Definition (2.2.1), we

will see in Corollary (2.2.17) that the restriction of the facial weak order to

the vertices of PW precisely coincides with the weak order.
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Figure 2.4: The facial weak order on the standard parabolic cosets of the Coxeter

group of types A2 and B2. Edges are labelled with the cover relations of type (1)

or (2) as in Definition (2.2.1).

(3) It is known that for I ⊆ S the set of minimal length coset representativesW I

has a maximal length element w◦w◦,I . The element w◦,Iw◦,Ir{s} is therefore

the maximal length element of the set W Ir{s}
I = WI ∩W Ir{s}, which is the

set of minimal coset representatives of the cosets WI/WIr{s}, see (Geck &

Pfeiffer, 2000, Section 2.2) for more details.

Example 2.2.3 As already mentioned, the facial weak order was first considered

by D. Krob, M. Latapy, J.-C. Novelli, H.-D. Phan and S. Schwer (Krob et al., 2001)

in type A. The standard parabolic cosets in type An−1 correspond to ordered

partitions of [n], see Example (2.1.1). The weak order on ordered partitions of [n]

is the transitive closure of the cover relations

(1) (λ1| · · · |λi|λi+1| · · · |λk) <· (λ1| · · · |λiλi+1| · · · |λk) if λi � λi+1,

(2) (λ1| · · · |λiλi+1| · · · |λk) <· (λ1| · · · |λi|λi+1| · · · |λk) if λi+1 � λi,
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Figure 2.5: The facial weak order on the standard parabolic cosets of the Coxeter

group of type A3.
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where the notation X � Y is defined for X, Y ⊆ N by

X � Y ⇐⇒ max(X) < min(Y ) ⇐⇒ x < y for all x ∈ X and y ∈ Y .

2.2.2 Root and weight inversion sets of standard parabolic cosets

We now define a collection of roots and a collection of weights associated to each

standard parabolic coset. The notion of root inversion sets of standard parabolic

cosets generalizes the inversion sets of elements of W (see Proposition (2.2.10)).

We will use root inversion sets extensively for our study of the facial weak order.

In contrast, weight inversion sets are not essential for our study of the facial weak

order but will be relevant when we study its lattice congruences. We define them

here as they are polar to the root inversion sets and appear naturally in our

geometric intuition of the W -Coxeter arrangement and of the W -permutahedron

(see Proposition (2.2.7)).

Definition 2.2.4 The root inversion set R(xWI) and weight inversion set W(xWI)

of a standard parabolic coset xWI are respectively defined by

R(xWI) :=x
(
Φ− ∪ Φ+

I

)
⊆ Φ and W(xWI) :=x

(
∇SrI

)
⊆ Ω

where∇SrI is the set of fundamental weights associated to the parabolic subgroup

WSrI .

Remark 2.2.5 Root inversion sets are known as “parabolic subsets of roots”

in the sense of (Bourbaki, 1968, Section 1.7). In particular for any x ∈ W , the

stabilizer of R(xWI) for the action of W on the subsets of Φ is the parabolic

subgroup xWIx
−1.

Example 2.2.6 Consider the facial weak order on the Coxeter group of typeAn−1,

see Examples (2.1.1) and (2.2.3). Following (Krob et al., 2001), we define the in-
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version table inv(λ) ∈ {−1, 0, 1}(
n
2) of an ordered partition λ of [n] by

inv(λ)i,j =



−1 if λ−1(i) < λ−1(j),

0 if λ−1(i) = λ−1(j),

1 if λ−1(i) > λ−1(j).

The root inversion set of a parabolic coset xWI of Sn is encoded by the inversion

table of the corresponding ordered partition λ. We have

inv(λ)i,j =



−1 if ei − ej ∈ R(xWI) but ej − ei /∈ R(xWI),

0 if ei − ej ∈ R(xWI) and ej − ei ∈ R(xWI),

1 if ei − ej /∈ R(xWI) but ej − ei ∈ R(xWI).

The following statement gives the precise connection to the geometry of the W -

permutahedron and is illustrated on Figure (2.6) for the Coxeter group of type A2.

Proposition 2.2.7 Let xWI be a standard parabolic coset of W . Then

(i) cone(R(xWI)) is the inner primal cone of the face F(xWI) of Perm(W ),

(ii) cone(W(xWI)) is the outer normal cone of the face F(xWI) of Perm(W ),

(iii) the cones generated by the root inversion set and by the weight inversion set

of xWI are polar to each other:

cone(R(xWI))� = cone(W(xWI)).

Proof. On the one hand, the inner primal cone of F(WI) is generated by the

vectors Φ− ∪ Φ+
I = R(eWI). On the other hand, the outer normal cone of F(WI)

is generated by the normal vectors of F(WI), i.e., by ∇SrI = W(eWI). The first

two points then follow by applying the orthogonal transformation x and the last

point is an immediate consequence of the first two.
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Figure 2.6: The root inversion sets (left) and weight inversion sets (right) of the

standard parabolic cosets in type A2. Note that positive roots point downwards.

It is well-known that the map N, sending an element w ∈ W to its inversion

set N(w) = Φ+ ∩ w(Φ−) is injective, see for instance (Hohlweg & Labbé, 2016,

Section 2). The following corollary is the analogue for the maps R and W.

Corollary 2.2.8 The maps R and W are both injective.

Proof. A face of a polytope is characterized by its inner primal cone (resp. outer

normal cone).

In a finite Coxeter group, a subset R of Φ+ is an inversion set if and only if it is

separable from its complement by a linear hyperplane, or equivalently if and only if

both R and its complement Φ+rR are convex (meaning that R = Φ+∩cone(R)).

The following statement gives an analogue for root inversion sets.

Corollary 2.2.9 The following assertions are equivalent for a subset R of Φ:

(i) R = R(xWI) for some coset xWI ∈ PW ,



49

(ii) R = {α ∈ Φ | ψ(α) ≥ 0} for some linear function ψ : V → R,

(iii) R = Φ ∩ cone(R) and R ∩ {±α} 6= ∅ for all α ∈ Φ.

Proof. According to Proposition (2.2.7), for any coset xWI , the set R(xWI) is

the set of roots in the inner normal cone of the face F(xWI) of Perm(W ). For

any linear function ψ : V → R, the set {α ∈ Φ | ψ(α) ≥ 0} is the set of roots

in the inner normal cone of the face of Perm(W ) defined by ψ. Since any face is

defined by at least one linear function and any linear function defines a face, we

get (i)⇐⇒ (ii). The equivalence (ii)⇐⇒ (iii) is immediate.

Our next three statements concern the root inversion set R(xW∅) for x ∈ W . For

brevity we write R(x) instead of R(xW∅). We first connect the root inversion

set R(x) to the inversion set N(x), to reduced words for x, and to the root

inversion sets R(xw◦) and R(w◦x).

Proposition 2.2.10 For any x ∈ W , the root inversion set R(x) has the fol-

lowing properties.

(i) R(x) = N(x) ∪ −
(
Φ+ rN(x)

)
where N(x) = Φ+ ∩ x(Φ−) is the (left) in-

version set of x. In other words,

R(x) ∩ Φ+ = N(x) and R(x) ∩ Φ− = −
(
Φ+ rN(x)

)
.

(ii) If x = s1s2 · · · sk is reduced, then

R(x) = Φ−4{±αs1 ,±s1(αs2), . . . ,±s1 · · · sk−1(αsk
)}.

(iii) R(xw◦) = −R(x) and R(w◦x) = w◦
(

R(x)
)
.

Proof. For (i) we observe that R(x) = x(Φ−) =
(
Φ+ ∩ x(Φ−)

)
∪
(
Φ− ∩ x(Φ−)

)
.

By definition of the inversion set we get

R(x) = N(x) ∪ −
(
Φ+ ∩ x(Φ+)

)
= N(x) ∪ −

(
Φ+ rN(x)

)
.
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(ii) then follows from the fact that N(x) = {αs1 , s1(αs2), . . . , s1 · · · sk−1(αsk
)}.

Finally, (iii) follows from the definition of R and the fact that w◦(Φ+) = Φ−.

The next statement gives a characterization of the (classical) weak order in terms

of root inversion sets, which generalizes the characterization of the weak order

in term of inversion sets. We will see later in Theorem (2.2.14) that the same

characterization holds for the facial weak order.

Corollary 2.2.11 For x, y ∈ W , we have

x ≤ y ⇐⇒ R(x)rR(y) ⊆ Φ− and R(y)rR(x) ⊆ Φ+,

⇐⇒ R(x) ∩ Φ+ ⊆ R(y) ∩ Φ+ and R(x) ∩ Φ− ⊇ R(y) ∩ Φ−.

Proof. We observe from Proposition (2.2.10) (i) that

R(x)rR(y) =
(

N(x)rN(y)
)
∪ −

(
N(y)rN(x)

)
.

The result thus follows immediately from the fact that x ≤ y ⇐⇒ N(x) ⊆ N(y),

see Section (2.1.3).

Finally, we observe that the root and weight inversion sets of a parabolic coset xWI

can be computed from that of its minimal and maximal length representatives x

and xw◦,I .

Proposition 2.2.12 The root and weight inversion sets of xWI can be computed

from those of x and xw◦,I by

R(xWI) = R(x) ∪R(xw◦,I) and W(xWI) = W(x) ∩W(xw◦,I).

Proof. For the root inversion set, we just write

R(x) ∪R(xw◦,I) = x(Φ−) ∪ xw◦,I(Φ−) = x(Φ−) ∪ x(Φ−4ΦI)

= x(Φ− ∪ Φ+
I ) = R(xWI).
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The proof is similar for the weight inversion set (or can be derived from Proposi-

tion (2.2.7)).

Corollary 2.2.13 For any coset xWI , we have

R(xWI) ∩ Φ− = R(x) ∩ Φ− and R(xWI) ∩ Φ+ = R(xw◦,I) ∩ Φ+

Proof. Since x ≤ xw◦,I , Corollary (2.2.11) ensures that R(x)∩Φ+ ⊆ R(xw◦,I)∩Φ+

and R(x)∩Φ− ⊇ R(xw◦,I)∩Φ−. Therefore, we obtain from Proposition (2.2.12)

that

R(xWI) ∩ Φ− =
(

R(x) ∪R(xw◦,I)
)
∩ Φ− = R(x) ∩ Φ−,

and similarly

R(xWI) ∩ Φ+ =
(

R(x) ∪R(xw◦,I)
)
∩ Φ+ = R(xw◦,I) ∩ Φ+.

2.2.3 Three equivalent characterizations of the facial weak order

We are now ready to give three equivalent characterizations of the facial weak

order: the original one in terms of cover relations (Palacios & Ronco, 2006), the

geometric one in terms of root inversion sets, and the combinatorial one as the sub-

poset of the poset of intervals of the weak order induced by the standard parabolic

subgroups. Using the root inversion sets defined in the previous section, we now

give two equivalent characterizations of the facial weak order defined by P. Pala-

cios and M. Ronco in (Palacios & Ronco, 2006) (see Definition (2.2.1)). In type A,

the equivalence (i)⇐⇒ (ii) below is stated in (Krob et al., 2001, Theorem 5) in

terms of half-inversion tables (see Examples (2.2.3) and (2.2.6)).

Theorem 2.2.14 The following conditions are equivalent for two standard parabolic

cosets xWI and yWJ in PW :
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(i) xWI ≤ yWJ in facial weak order,

(ii) R(xWI)rR(yWJ) ⊆ Φ− and R(yWJ)rR(xWI) ⊆ Φ+,

(iii) x ≤ y and xw◦,I ≤ yw◦,J in weak order.

Proof. We will prove that (i)⇒(iii)⇒(ii)⇒(i), the last implication being the most

technical.

The implication (i)⇒(iii) is immediate. The first cover relation keeps x and trans-

forms xw◦,I to xw◦,I∪{s}, and the second cover relation transforms x to xw◦,Iw◦,Ir{s}
but keeps xw◦,I . Since xw◦,I ≤ xw◦,I∪{s} and x ≤ xw◦,Iw◦,Ir{s}, we obtain the re-

sult by transitivity.

For the implication (iii)⇒(ii), Corollary (2.2.11) ensures that R(x)rR(y) ⊆ Φ−

and R(y)rR(x) ⊆ Φ+ since x ≤ y, and similarly that R(xw◦,I)rR(yw◦,J) ⊆ Φ−

and R(yw◦,J)rR(xw◦,I) ⊆ Φ+ since xw◦,I ≤ yw◦,J . From Proposition (2.2.12),

we therefore obtain

R(xWI)rR(yWJ) =
(

R(x) ∪R(xw◦,I)
)
r
(

R(y) ∪R(yw◦,J)
)

⊆
(

R(x)rR(y)
)
∪
(

R(xw◦,I)rR(yw◦,J)
)

⊆ Φ−.

We prove similarly that R(yWJ)rR(xWI) ⊆ Φ+.

We now focus on the implication (ii)⇒(i). We consider two standard parabolic

cosets xWI and yWJ which satisfy Condition (ii) and construct a path of cover

relations as in Definition (2.2.1) between them. We proceed by induction on the

cardinality |R(xWI)4 R(yWJ)|.

First, if |R(xWI)4 R(yWJ)| = 0, then R(xWI) = R(yWJ), which ensures

that xWI = yWJ by Corollary (2.2.8). Assume now that |R(xWI)4 R(yWJ)| > 0.
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So we either have R(xWI)rR(yWJ) 6= ∅ or R(yWJ)rR(xWI) 6= ∅. We consider

only the case R(xWI)rR(yWJ) 6= ∅, the other case being symmetric.

To proceed by induction, our goal is to find a new coset zWK so that

• xWI <· zWK is one of the cover relations of Definition (2.2.1),

• zWK and yWJ still satisfy Condition (ii), and

• R(zWK)4 R(yWJ) ( R(xWI)4 R(yWJ).

Indeed, by induction hypothesis, there will exist a path from zWK to yWJ consist-

ing of cover relations as in Definition (2.2.1). Adding the first step xWI <· zWK ,

we then obtain a path from xWI to yWJ .

To construct this new coset zWK and its root inversion set R(zWK), we will add

or delete (at least) one root from R(xWI). We first claim that there exists s ∈ S

such that −x(αs) /∈ R(yWJ). Otherwise, we would have x(−∆) ⊆ R(yWJ). Since

Φ− = cone(−∆) ∩ Φ and R(yWJ) = cone(R(yWJ)) ∩ Φ, this would imply that

x(Φ−) ⊆ R(yWJ). Moreover, x(Φ+
I ) ⊆ Φ+ since x ∈ W I . Thus we would obtain

R(xWI)rR(yWJ) =
(
x(Φ−) ∪ x(Φ+

I )
)
rR(yWJ)

⊆
(
x(Φ−)rR(yWJ)

)
∪ x(Φ+

I )

⊆ Φ+.

However, R(xWI) r R(yWJ) ⊆ Φ− by Condition (ii). Hence we would obtain

that R(xWI)rR(yWJ) ⊆ Φ+ ∩ Φ− = ∅, contradicting our assumption.

For the remaining of the proof we fix s ∈ S such that −x(αs) /∈ R(yWJ)

and we set β :=x(αs). By definition, we have −β ∈ R(xWI)rR(yWJ). More-

over, since −β /∈ R(yWJ) and R(yWJ) ∪ −R(yWJ) ⊇ y(Φ−) ∪ −y(Φ−) = Φ, we
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have β ∈ R(yWJ). We now distinguish two cases according to whether or not

β ∈ R(xWI), that is, on whether or not s ∈ I. In both cases, we will need the

following observation: since R(xWI)rR(yWJ) ⊆ Φ−, we have

x(Φ+
I ) ⊆ Φ+ ∩R(xWI) ⊆ R(yWJ). (?)

First case: s /∈ I. Since −x(αs) = −β ∈ R(xWI) r R(yWJ) ⊆ Φ−, we have

that x(αs) ∈ Φ+ and thus x ∈ W I∪{s}. We can therefore consider the standard

parabolic coset zWK :=xWI∪{s} where z :=x and K := I ∪ {s}. Its root inversion

set is given by R(zWK) = R(xWI) ∪ x(Φ+
K). Note that xWI <· zWK is a cover re-

lation of type (1) in Definition (2.2.1). It thus remains to show that zWK and yWJ

still satisfy Condition (ii) and that R(zWK)4 R(yWJ) ( R(xWI)4 R(yWJ).

Since β = x(αs) ∈ R(yWJ) and using Observation (?) above, we thus have

x(Φ+
K) = cone

(
{β} ∪ x(Φ+

I )
)
∩ Φ ⊆ R(yWJ).

Therefore we obtain

R(zWK)rR(yWJ) = R(xWI) ∪ x(Φ+
K)rR(yWJ) ⊆ R(xWI)rR(yWJ) ⊆ Φ−.

Moreover, since R(xWI) ⊆ R(zWK),

R(yWJ)rR(zWK) ⊆ R(yWJ)rR(xWI) ⊆ Φ+.

Therefore, we proved that the cosets zWK and yWJ still satisfy Condition (ii)

and that R(zWK)4 R(yWJ) ⊆ R(xWI)4 R(yWJ). The strict inclusion then

follows since −β belongs to R(xWI)4 R(yWJ) but not to R(zWK)4 R(yWJ).

Second case: s ∈ I. Let s? :=w◦,Isw◦,I . Consider the standard parabolic

coset zWK where K := I r {s?} and z :=xw◦,Iw◦,K . Note that xWI <· zWK is

a cover relation of type (2) in Definition (2.2.1). It thus remains to show that zWK

and yWJ still satisfy Condition (ii) and that R(zWK)4 R(yWJ) ( R(xWI)4 R(yWJ).
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We first prove that

R(xWI) = R(zWK) ∪ x(Φ−I )r x(Φ−Ir{s}). (♣)

Observe that w◦,I(Φ−) = Φ−4ΦI and that w◦,I(ΦK) = w◦,I(ΦIr{s?}) = ΦIr{s}.

Therefore,

w◦,Iw◦,K(Φ−) = w◦,I(Φ−4ΦK) = Φ−4 (ΦI r ΦIr{s})

and w◦,Iw◦,K(Φ+
K) = w◦,I(Φ−K) = Φ+

Ir{s}.

Therefore we obtain the desired equality:

R(xWI) = x(Φ− ∪ Φ+
I )

= x
(
Φ−4 (ΦI r ΦIr{s})

)
∪ x(Φ+

Ir{s}) ∪ x(Φ−I )r x(Φ−Ir{s})

= xw◦,Iw◦,K(Φ−) ∪ xw◦,Iw◦,K(Φ+
K) ∪ x(Φ−I )r x(Φ−Ir{s})

= R(zWK) ∪ x(Φ−I )r x(Φ−Ir{s}).

We now check that

(
x(Φ−I )r x(Φ−Ir{s})

)
∩R(yWJ) = ∅. (♠)

Indeed, assume that this set contains an element δ. We have δ = a(−β) + γ,

where a > 0 and γ ∈ x(Φ−Ir{s}). Therefore, −β = (δ − γ)/a. Since δ ∈ R(yWJ)

and −γ ∈ x(Φ+
Ir{s}) ⊆ x(Φ+

I ) ⊆ R(yWJ) by Observation (?) above, we would ob-

tain that −β ∈ R(yWJ), contradicting our definition of β.

Now, combining Equations (♣) and (♠), we obtain

R(yWJ)rR(zWK) ⊆ R(yWJ)rR(xWI) ⊆ Φ+.

Moreover, since R(zWK) ⊆ R(xWI),

R(zWK)rR(yWJ) ⊆ R(xWI)rR(yWJ) ⊆ Φ−.
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Therefore, we proved that the cosets zWK and yWJ still satisfy Condition (ii)

and that R(zWK)4 R(yWJ) ⊆ R(xWI)4 R(yWJ). The strict inclusion then

follows as −β belongs to R(xWI)4 R(yWJ) but not to R(zWK)4 R(yWJ).

This concludes the proof.

Remark 2.2.15 Observe that our characterization of the facial weak order in

terms of root inversion sets given in Theorem (2.2.14) (ii) is equivalent to the

following: xWI ≤ yWJ if and only if

(ii’) R(xWI) ∩ Φ+ ⊆ R(yWJ) ∩ Φ+ and R(xWI) ∩ Φ− ⊇ R(yWJ) ∩ Φ−.

Example 2.2.16 We have illustrated the facial weak order by the means of

root inversion sets in Figure (2.7). In this figure each face is labelled by its

root inversion set. To visualize the roots, we consider the affine plane P passing

through the simple roots {α, β, γ}. A positive (resp. negative) root ρ is then seen

as a red upward (resp. blue downward) triangle placed at the intersection of Rρ

with the plane P . For instance,

R(cbWa) = {γ, β + γ, α + β + γ} ∪ {−α,−β,−α− β − γ,−α− β}.

is labelled in Figure (2.7) by

4
4

5

5
5
54

−α γ

−α− β β + γ

−β

Note that the star in the middle represents both α + β + γ and −α− β − γ.

Using either our characterization of Theorem (2.2.14) (ii) together with Corol-

lary (2.2.11), or our characterization of Theorem (2.2.14) (iii), we obtain that the

facial weak order and the weak order coincide on the elements of W . Note that

this is not at all obvious with the cover relations from Definition (2.2.1).



57

4

4

4
444

4

4
4445

4 4
444

5

4

4
4445

4 44
45
5

4
4
445

5

4 44
4
5
5

4

4
445
5

4
44

5

5
5

4 44

5
55

4
445

5
5

4
4

5

5
55

4 4

5
555

4
4
5

5
55

4

5

5
555

5

5

5
555

45

5
555

4 5
55

5
54

5

5
55554

4

5
55554

4
4
5

5
554

5

5
55554

4

5
55554

4 4

5
5554

4
44

5
5
54

45

5
5554

4 44

5
554

4 44
5
5
54

4 44
4
5
54

4

4
445
54 4 44

4
5
54

4
4

5

5
554

4

4
44454

4
44

5
5
54

4
4
445

54

4

4
44454

4 44
4
5
5

4
4454

54
54

5
55554 54

4

5
5545454

4
4454

54
54

4 44

5
5454

4

5
5
5454
54

Figure 2.7: The facial weak order on the standard parabolic cosets of the Coxeter

group of type A3. Each coset xWI is replaced by its root inversion set R(xWI),

represented as follows: down blue triangles stand for negative roots while up red

triangles stand for positive roots, and the position of each triangle is given by

the barycentric coordinates of the corresponding root with respect to the three

simple roots (α on the bottom left, β on the top, and γ on the bottom right). See

Example (2.2.16) for more details.
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Corollary 2.2.17 For any x, y ∈ W , we have x ≤ y in weak order if and only

if xW∅ ≤ yW∅ in facial weak order.

The weak order anti-automorphisms x 7→ xw◦ and x 7→ w◦x and the automor-

phism x 7→ w◦xw◦ correspond to maps on standard parabolic cosets. The follow-

ing statement gives the precise definitions of the corresponding maps.

Proposition 2.2.18 The maps

xWI 7−→ w◦xw◦,IWI and xWI 7−→ xw◦,Iw◦Ww◦Iw◦

are anti-automorphisms of the facial weak order. Consequently, the map

xWI 7−→ w◦xw◦Ww◦Iw◦

is an automorphism of the facial weak order.

Proof. Using the characterization of the facial weak order given in Theorem (2.2.14) (ii)

we just need to observe that

R(w◦xw◦,IWI) = w◦
(

R(xWI)
)

and R(xw◦,Iw◦Ww◦Iw◦) = −R(xWI).

This follows immediately from Propositions (2.2.12) and (2.2.10) (iii).

2.2.4 The facial weak order is a lattice

In this section, we show that the facial weak order on standard parabolic cosets

is a lattice. It generalizes the result for the symmetric group due to D. Krob,

M. Latapy, J.-C. Novelli, H.-D. Phan and S. Schwer (Krob et al., 2001) to the

facial weak order on arbitrary finite Coxeter groups introduced by P. Palacios

and M. Ronco (Palacios & Ronco, 2006). It also gives a precise description of

the meets and joins in this lattice. The characterizations of the facial weak order

given in Theorem (2.2.14) are key here.
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Theorem 2.2.19 The facial weak order (PW ,≤) is a lattice. The meet and join

of two standard parabolic cosets xWI and yWJ are given by:
xWI ∧ yWJ = z∧WK∧ where z∧ = x ∧ y and K∧ = DL

(
z−1
∧ (xw◦,I ∧ yw◦,J)

)
,

xWI ∨ yWJ = z∨WK∨ where z∨ = xw◦,I ∨ yw◦,J and K∨ = DL

(
z−1
∨ (x ∨ y)

)
.

Let us provide some intuition on this statement. Note that the poset of intervals of

a lattice L is again a lattice whose meet and join are given by [x,X] ∧ [y, Y ] = [x ∧ y,X ∧ Y ]

and [x,X] ∨ [y, Y ] = [x ∨ y,X ∨ Y ]. The interval [x ∧ y, xw◦,I ∧ yw◦,J ] is thus the

meet interval of the two standard parabolic coset xWI and yWJ in the lattice of

intervals of the weak order. However, this meet interval is not anymore a stan-

dard parabolic coset. The meet xWI ∧ yWJ in the facial weak order is obtained

as the biggest parabolic coset in this meet interval [x ∧ y, xw◦,I ∧ yw◦,J ] contain-

ing x∧ y. Similarly, the join xWI ∨ yWJ is the biggest parabolic coset in the join

interval [x ∨ y, xw◦,I ∨ yw◦,J ] containing xw◦,I ∨ yw◦,J .

Note that in the second point of Theorem (2.2.19), the minimal representative of

the coset z∨WK∨ is in fact z∨w◦,K∨ , not z∨. Unlike in the rest of the paper, we take

the liberty to use another coset representative than the minimal one to underline

the symmetry between meet and join in the facial weak order.

Example 2.2.20 Before proving the above statement, we give two examples of

computations of the meet and the join in the facial weak order.

(i) Consider first the Coxeter system〈
r, s, t

∣∣∣ r2 = s2 = t2 = (rs)3 = (st)3 = (rt)2 = 1
〉

of type A3. Figure (2.5) shows the facial weak order of PW and is a good

way to follow along. To find the meet of tsrWst and rtsW∅, we compute:

z∧ = tsr ∧ rts = t,

K∧ = DL

(
z−1
∧ (tsrw◦,st ∧ rtsw◦,∅)

)
= DL

(
t(tsrsts ∧ rts)

)
= DL(t(rts)) = {r}.
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Thus we have that tsrWst ∧ rtsW∅ = z∧WK∧ = tWr.

(ii) For a slightly more complex example, consider the Coxeter system

〈
r, s, t

∣∣∣ r2 = s2 = t2 = (rs)4 = (st)3 = (rt)2 = 1
〉

of type B3. To find the join of rstWrs and tsrsW∅, we compute:

z∨ = rstw◦,rs ∨ tsrsw◦,∅ = rstrsrs ∨ tsrs = rtsrtsrt

K∨ = DL

(
z−1
∨ (rst ∨ tsrs)

)
= DL

(
trstrstr(rtsrtst)

)
= DL(r) = {r}

Thus we see that

rstWrs ∨ tsrsw◦,∅ = z∨w◦,K∨WK∨ = rtsrtsrt(r)Wr = rtsrtstWr.

Proof of Theorem (2.2.19). Throughout the proof we use the characterization of

the facial weak order given in Theorem (2.2.14) (iii):

xWI ≤ yWJ ⇐⇒ x ≤ y and xw◦,I ≤ yw◦,J .

We first prove the existence of the meet, then use Proposition (2.2.18) to deduce

the existence and formula for the join.

Existence of meet. For any s ∈ K∧, we have

`(xw◦,I ∧ yw◦,J)− `(sz−1
∧ ) ≤ `

(
sz−1
∧ (xw◦,I ∧ yw◦,J)

)
= `

(
z−1
∧ (xw◦,I ∧ yw◦,J)

)
− 1

= `(xw◦,I ∧ yw◦,J)− `(z−1
∧ )− 1.

Indeed, the first inequality holds in general (for reduced or non-reduced words).

The first equality follows from s ∈ K∧ = DL(z−1
∧ (xw◦,I ∧ yw◦,J)). The last equal-

ity holds since z∧ = x ∧ y ≤ xw◦,I ∧ yw◦,J . We deduce from this inequality

that `(z∧) < `(z∧s). Therefore, we have z∧ ∈ WK∧ .
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Since K∧ = DL(z−1
∧ (xw◦,I ∧ yw◦,J)), we have w◦,K∧ ≤ z−1

∧ (xw◦,I ∧ yw◦,J). There-

fore z∧w◦,K∧ ≤ xw◦,I ∧ yw◦,J , since z∧ ∈ WK∧ . We thus have z∧ = x ∧ y ≤ x

and z∧w◦,K∧ ≤ xw◦,I ∧ yw◦,J ≤ xw◦,I , which implies z∧WK∧ ≤ xWI , by Theo-

rem (2.2.14) (ii). By symmetry, z∧WK∧ ≤ yWJ .

It remains to show that z∧WK∧ is the greatest lower bound. Consider a standard

parabolic coset zWK such that zWK ≤ xWI and zWK ≤ yWJ . We want to show

that zWK ≤ z∧WK∧ , that is, z ≤ z∧ and zw◦,K ≤ z∧w◦,K∧ . The first inequality

is immediate since z ≤ x and z ≤ y so that z ≤ x ∧ y = z∧. For the second

one, we write the following reduced words: x = zx′, y = zy′, and z∧ = zz′∧

where z′∧ = x′ ∧ y′. Since zw◦,K ≤ xw◦,I and zw◦,K ≤ yw◦,J , we have

zw◦,K ≤ xw◦,I ∧ yw◦,J = zx′w◦,I ∧ zy′w◦,J = z(x′w◦,I ∧ y′w◦,J).

Thus w◦,K ≤ x′w◦,I ∧ y′w◦,J , since all words are reduced here. Therefore

K ⊆ DL(x′w◦,I ∧ y′w◦,J).

We now claim that DL(x′w◦,I ∧ y′w◦,J) ⊆ DL(z′∧w◦,K∧). To see it, consider

s ∈ DL(x′w◦,I ∧ y′w◦,J) and assume by contradiction that s /∈ DL(z′∧w◦,K∧). Then s

does not belong to DL(z′∧), since the expression z′∧w◦,K∧ is reduced. By Deodhar’s

Lemma (see Section (2.1.4)) we obtain that either sz′∧ ∈ WK∧ or sz′∧ = z′∧t where

t ∈ DL

(
z′−1
∧ (x′w◦,I ∧ y′w◦,J)

)
= DL

(
z−1
∧ (xw◦,I ∧ yw◦,J)

)
= K∧.

In the first case we obtain

1 + `(z′∧) + `(w◦,K∧) = `(sz′∧w◦,K∧) = `(z′∧w◦,K∧)− 1 = `(z′∧) + `(w◦,K∧)− 1

a contradiction. In the second case, we get

1 + `(z′∧) + `(w◦,K∧) = `(sz′∧w◦,K∧) = `(z′∧tw◦,K∧)

= `(z′∧) + `(tw◦,K∧) = `(z′∧) + `(w◦,K∧)− 1,
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a contradiction again. This proves that DL(x′w◦,I ∧ y′w◦,J) ⊆ DL(z′∧w◦,K∧).

To conclude the proof, we deduce from K ⊆ DL(x′w◦,I ∧ y′w◦,J) ⊆ DL(z′∧w◦,K∧)

that w◦,K ≤ z′∧w◦,K∧ , and finally that zw◦,K ≤ zz′∧w◦,K∧ = z∧w◦,K∧ since all expres-

sions are reduced. Since z ≤ z∧ and zw◦,K ≤ z∧w◦,K∧ , we have zWK ≤ z∧WK∧ so

that z∧WK∧ is indeed the greatest lower bound.

Existence of join. The existence of the join follows from the existence of meet

and the anti-automorphism Ψ : xWI 7−→ w◦xw◦,IWI from Proposition (2.2.18).

Using the fact that w◦(w◦u ∧ w◦v) = u ∨ v, we get the formula

xWI ∨ yWJ = Ψ
(
Ψ(xWI) ∧Ψ(yWJ)

)
= Ψ(w◦xw◦,IWI ∧ w◦yw◦,JWJ)

= Ψ
(
(w◦xw◦,I ∧ w◦yw◦,J)WDL((w◦xw◦,I∧w◦yw◦,J )−1(w◦x∧w◦y))

)
= Ψ

(
(w◦xw◦,I ∧ w◦yw◦,J)WK∨

)
= w◦(w◦xw◦,I ∧ w◦yw◦,J)w◦,K∨WK∨

= z∨w◦,K∨WK∨ .

We already observed in Corollary (2.2.17) that the classical weak order is a sub-

poset of the facial weak order. The formulas of Theorem (2.2.19) ensure that it

is also a sublattice.

Corollary 2.2.21 The classical weak order is a sublattice of the facial weak

order.

Proof. If I = J = ∅, then K = ∅ in the formulas of Theorem (2.2.19).

Remark 2.2.22 It is well-known that the map x 7→ xw◦ is an orthocomplemen-

tation of the weak order: it is involutive, order-reversing and satisfies xw◦∧x = e
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and xw◦ ∨ x = w◦. In other words, it endows the weak order with a structure

of ortholattice, see for instance (Björner & Brenti, 2005, Corollary 3.2.2). This

is no longer the case for the facial weak order: the map xWI 7−→ w◦xw◦,IWI is

indeed involutive and order-reversing, but is not an orthocomplementation: for a

(counter-)example, consider x = e and I = S.

2.2.5 Further properties of the facial weak order

In this section, we study some properties of the facial weak order: we compute its

partial Möbius function, discuss formulas for the root inversion sets of meet and

join, and describe its join-irreducible elements.

Möbius function

Recall that the Möbius function of a poset P is the function µ : P × P → Z

defined inductively by

µ(p, q) :=



1 if p = q,

−
∑

p≤r<q
µ(p, r) if p < q,

0 otherwise.

We refer the reader to (Stanley, 2011) for more information on Möbius functions.

The following statement gives the values µ(yWJ) :=µ(eW∅, yWJ) of the Möbius

function on the facial weak order.

Proposition 2.2.23 The Möbius function of the facial weak order is given by

µ(yWJ) :=µ(eW∅, yWJ) =


(−1)|J |, if y = e,

0, otherwise.
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Proof. We first show the equality when y = e. From the characterization of

Theorem (2.2.14) (iii), we know that xWI ≤ WJ if and only if x = e and I ⊆ J .

That is, the facial weak order below WJ is isomorphic to the boolean lattice

on J (for example, the reader can observe a 3-dimensional cube below W in

Figure (2.5)). The result follows when y = e since the Möbius function of the

boolean lattice on J is given by µ(I) = (−1)|I| for I ⊆ J (inclusion-exclusion

principle (Stanley, 2011)).

We now prove by double induction on the length `(y) and the rank |J | that

µ(yWJ) = 0 for any coset yWJ with `(y) ≥ 1 and J ⊆ S. Indeed, consider yWJ

with `(y) ≥ 1 and assume that we have proved that µ(xWI) = 0 for all xWI

with 1 ≤ `(x) < `(y) or with `(x) = `(y) and |I| < |J |. Since xWI < yWJ implies

that x < y, or x = y and I ( J we have

µ(yWJ) = −
∑

xWI<yWJ

µ(xWI) = −
∑

WI<yWJ

µ(WI).

Therefore, since WI < yWJ ⇐⇒ w◦,I ≤ yw◦,J ⇐⇒ I ⊆ DL(yw◦,J), we have the

non-empty boolean lattice on DL(yw◦,J) and

µ(yWJ) = −
∑

WI<yWJ

µ(WI) = −
∑

I⊆DL(yw◦,J )
µ(WI) = −

∑
I⊆DL(yw◦,J )

(−1)|I| = 0.

Formulas for root inversion sets of meet and join

For X ⊆ Φ, define the operators

[
X
]⊕

:= Φ+ ∩ cone(X) and
[
X
]	

:= Φ− ∩ cone(X),

and their counterparts

[
X
]
⊕

:= Φ+ r
[
Φ+ rX

]⊕
and

[
X
]
	

:= Φ− r
[
Φ− rX

]	
.
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Note that
[
X∩Φ+

]⊕
=
[
X
]⊕

,
[
X∩Φ+

]
⊕

=
[
X
]
⊕
, and −

[
X
]⊕

=
[
−X

]	
. Similar

formulas hold exchanging 	’s with ⊕’s. Using these notations it is well known

that the inversion sets of the meet and join in the (classical) weak order can be

computed by

N(x ∧ y) =
[

N(x) ∩N(y)
]
⊕

and N(x ∨ y) =
[

N(x) ∪N(y)
]⊕
. (♥)

For references on this property, see for example (Björner et al., 1990, Theorem 5.5)

and the discussion in (Hohlweg & Labbé, 2016) for its extension to infinite Coxeter

groups. Our next statement extends these formulas to compute the root inversion

sets of the meet and join in the classical weak order.

Corollary 2.2.24 For x, y ∈ W , the root inversion sets of the meet and join

of x and y are given by

R(x ∧ y) =
[

R(x) ∪R(y)
]	
∪
[

R(x) ∩R(y)
]
⊕
,

and R(x ∨ y) =
[

R(x) ∩R(y)
]
	
∪
[

R(x) ∪R(y)
]⊕
.

Proof. This is immediate from Equation (♥) and Proposition (2.2.10) (i).

We would now like to compute the root inversion sets of the meet xWI ∧yWJ and

join xWI ∨yWJ in the facial weak order in terms of the root inversion sets of xWI

and yWJ . However, we only have a partial answer to this question.

Proposition 2.2.25 For any cosets xWI , yWJ ∈ PW , we have

R(xWI ∧ yWJ) ∩ Φ− =
[

R(xWI) ∪R(yWJ)
]	
,

and R(xWI ∧ yWJ) ∩ Φ+ ⊆
[

R(xwI) ∩R(yWJ)
]
⊕
,

while

R(xWI ∨ yWJ) ∩ Φ− ⊆
[

R(xWI) ∩R(yWJ)
]
	
,

and R(xWI ∨ yWJ) ∩ Φ+ =
[

R(xWI) ∪R(yWJ)
]⊕
.
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Proof. According to Theorem (2.2.19), we have xWI∧yWJ = z∧WK∧ with z∧ = x ∧ y

and K∧ = DL

(
z−1
∧ (xw◦,I ∧ yw◦,J)

)
. Then using Corollaries (2.2.24) and (2.2.13),

we have

R(xWI ∧ yWJ) ∩ Φ− = R(z∧WK∧) ∩ Φ− = R(z∧) ∩ Φ− = R(x ∧ y) ∩ Φ−

=
[

R(x) ∪R(y)
]	

=
[

R(xWI) ∪R(yWJ)
]	
.

Moreover, since z∧w◦,K∧ ≤ xw◦,I ∧ yw◦,J , we have

R(xWI ∧ yWJ) ∩ Φ+ = R(z∧WK∧) ∩ Φ+ = R(z∧w◦,K∧) ∩ Φ+ ⊆ R(xw◦,I ∧ yw◦,J) ∩ Φ+

=
[

R(xw◦,I) ∩R(yw◦,J)
]
⊕

=
[

R(xWI) ∩R(yWJ)
]
⊕

The proof is similar for the join, or can be obtained by the anti-automorphism of

Proposition (2.2.18).

Remark 2.2.26 The inclusions R(xWI ∧ yWJ) ∩ Φ+ ⊆
[

R(xwI) ∩R(yWJ)
]
⊕

and R(xWI ∨ yWJ) ∩ Φ− ⊆
[

R(xWI) ∩ R(yWJ)
]
	
can be strict. For example,

letting α = αr, β = αs, and γ = αt, we have by Example (2.2.20)

R(tsrWst ∧ rtsW∅) ∩ Φ+ = R(tWr) ∩ Φ+ = {α, γ}

which differs from[
R(tsrWst)∩R(rtsW∅)

]
⊕

=
[
{α, γ, α+β+γ,−β,−α−β}

]
⊕

= {α, γ, α+β+γ}.

Following (Krob et al., 2001, Proposition 9), the set R(xWI ∧ yWJ) ∩ Φ+ can be

computed as

R(xWI ∧ yWJ) ∩ Φ+ =
⋂
R

R ∩ Φ+

where the intersection runs over all R ⊆ Φ satisfying the equivalent conditions of

Corollary (2.2.9) such that

R ∩ Φ+ ⊆
[

R(xwI) ∩R(yWJ)
]
⊕

while R ∩ Φ− ⊇
[

R(xWI) ∪R(yWJ)
]	
.

However, this formula does not provide an efficient way to compute the root set

of meets and joins in the facial weak order.
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Join irreducible elements

An element x of a finite lattice L is join-irreducible if it cannot be written

as x = ∨
Y for some Y ⊆ L r {x}. Equivalently, x is join-irreducible if it covers

exactly one element x? of L. For example, the join-irreducible elements of the

classical weak order are the elements ofW with a single descent. Meet-irreducible

elements are defined similarly. We now characterize the join-irreducible elements

of the facial weak order.

Proposition 2.2.27 A coset xWI is join-irreducible in the facial weak order if

and only if I = ∅ and x is join-irreducible, or I = {s} and xs is join-irreducible.

Proof. Since xWI covers xWIr{s} for any s ∈ S, we have |I| ≤ 1 for any join-

irreducible coset xWI .

Suppose I = ∅. The cosets covered by xW∅ are precisely the cosets xsW{s}
with xs <· x. Therefore, xW∅ is join-irreducible if and only if x is join-irreducible.

Moreover, (xW∅)? = {x?, x} = xsWs.

Suppose I = {s}. The cosets covered by xW{s} are precisely xW∅ and the

cosets xsw◦,{s,t}W{s,t} for xst < xs. Therefore, xW{s} is join-irreducible if and only

if xs only covers x, i.e., if xs is join-irreducible. Moreover, (xW{s})? = {x}.

Using the anti-automorphism of Proposition (2.2.18), we get the following state-

ment.

Corollary 2.2.28 A coset xWI is meet-irreducible in the facial weak order if

and only if I = ∅ and x is meet-irreducible, or I = {s} and x is meet-irreducible.
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2.2.6 Facial weak order on the Davis complex for infinite Coxeter groups

A natural question is to wonder if a facial weak order exists for the Coxeter com-

plex of an infinite Coxeter system (W,S). As the definition given by P. Palacios

and M. Ronco makes extensive use of the longest element of each WI and of the

longest element in the coset W I , we do not know of any way to extend our results

to the Coxeter complex.

However, partial results could be obtained with the Davis complex , see for in-

stance (Davis, 2008) or (Abramenko & Brown, 2008), which is the simplicial

complex

DW =
⋃
I⊆S

WI finite

W/WI .

Definition 2.2.29 Call facial weak order (DW ,≤) on the Davis complex the

order defined by xWI ≤ yWJ if and only if x ≤ y and xw◦I ≤ yw◦J in right weak

order.

All the results used to prove the existence and formula for the meet in Theo-

rem (2.2.19) in the case of a finite Coxeter system only use the above definition

of the facial weak order, as well as standard results valid for any Coxeter sys-

tem; the finiteness of WK∧ being guaranteed by the fact that a standard parabolic

subgroup WK is finite if and only if there is w ∈ W such that DL(w) = K, see

for instance (Björner & Brenti, 2005, Proposition 2.3.1). We therefore obtain the

following result that generalizes A. Björner’s result for the weak order (Björner,

1984) to the facial weak order on the Davis complex.

Theorem 2.2.30 The facial weak order on the Davis complex is a meet-semilattice.

The meet of two cosets xWI and yWJ in DW is

xWI ∧ yWJ = z∧WK∧ where z∧ = x ∧ y and K∧ = DL

(
z−1
∧ (xw◦,I ∧ yw◦,J)

)
.



69

2.3 Lattice congruences and quotients of the facial weak order

A lattice congruence on a lattice (L,≤,∧,∨) is an equivalence relation ≡ which

respects meets and joins, meaning that x ≡ x′ and y ≡ y′ implies x ∧ y ≡ x′ ∧ y′

and x ∨ y ≡ x′ ∨ y′. Note that a lattice congruence ≡ on L yields a lattice con-

gruence on the lattice of intervals I(L), defined by [x,X] [x′, X ′] ⇐⇒ x ≡ x′

and X ≡ X ′.

In this section we start from any lattice congruence ≡ of the weak order and con-

sider the equivalence relation on the Coxeter complex PW by xWI yWJ ⇐⇒ x ≡ y

and xw◦,I ≡ yw◦,J . The goal of this section is to show that always defines a lat-

tice congruence of the facial weak order. This will require some technical results

on the weak order congruence ≡ (see Section (2.3.2)) and on the projection maps

of the congruence (see Theorem (2.3.11)).

On the geometric side, the congruence of the facial weak order provides a

complete description (see Theorem (2.3.22)) of the simplicial fan F≡ associated

to the weak order congruence ≡ in N. Reading’s work (Reading, 2005): while the

classes of ≡ correspond to maximal cones in F≡, the classes of correspond to all

cones in F≡ (maximal or not). We illustrate this construction in Section (2.3.7)

with the facial boolean lattice (faces of a cube) and with the facial Cambrian

lattices (faces of generalized associahedra) arising from the Cambrian lattices and

fans of (Reading, 2006; Reading & Speyer, 2009).

2.3.1 Lattice congruences and projection maps

We first recall the definition of lattice congruences and quotients and refer to (Read-

ing, 2004; Reading, 2006) for further details.

Definition 2.3.1 An order congruence is an equivalence relation ≡ on a poset P
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such that:

(i) Every equivalence class under ≡ is an interval of P .

(ii) The projection π↑ : P → P (resp. π↓ : P → P ), which maps an element of P

to the maximal (resp. minimal) element of its equivalence class, is order

preserving.

The quotient P/≡ is a poset on the equivalence classes of ≡, where the order re-

lation is defined by X ≤ Y in P/≡ if and only if there exist representatives x ∈ X

and y ∈ Y such that x ≤ y in P . The quotient P/≡ is isomorphic to the subposet

of P induced by π↓(P ) (or equivalently by π↑(P )).

If, moreover, P is a finite lattice, then ≡ is a lattice congruence, meaning that it is

compatible with meets and joins: for any x ≡ x′ and y ≡ y′, we have x∧y ≡ x′∧y′

and x∨y ≡ x′∨y′. The poset quotient P/≡ then inherits a lattice structure where

the meet X ∧ Y (resp. the join X ∨ Y ) of two congruence classes X and Y is the

congruence class of x ∧ y (resp. of x ∨ y) for arbitrary representatives x ∈ X

and y ∈ Y .

In our constructions we will use the projection maps π↑ and π↓ to define congru-

ences. By definition note that π↓(x) ≤ x ≤ π↑(x), that π↑ ◦ π↑ = π↑ ◦ π↓ = π↑ while

π↓◦ π↓= π↓◦ π↑= π↓, and that π↑ and π↓ are order preserving. The following lemma

shows the reciprocal statement.

Lemma 2.3.2 If two maps π↑ : P → P and π↓ : P → P satisfy

(i) π↓(x) ≤ x ≤ π↑(x) for any element x ∈ P ,

(ii) π↑◦ π↑= π↑◦ π↓= π↑ and π↓◦ π↓= π↓◦ π↑= π↓,
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(iii) π↑ and π↓ are order preserving,

then the fibers of π↑ and π↓ coincide and the relation ≡ on P defined by

x ≡ y ⇐⇒ π↑(x) = π↑(y) ⇐⇒ π↓(x) = π↓(y)

is an order congruence on P with projection maps π↑ and π↓.

Proof. First, Condition (ii) ensures that π↑(x) = π↑(y) ⇐⇒ π↓(x) = π↓(y) for any

x, y ∈ P , so that the fibers of the maps π↑ and π↓ coincide. We now claim that

if z ∈ π↓(P ), then the fiber π−1
↓ (z) is the interval [z, π↑(z)]. Indeed, if π↓(x) = z,

then π↑(x) = π↑(π↓(x)) = π↑(z) by Condition (ii), so that z ≤ x ≤ π↑(z) by Con-

dition (i). Reciprocally, for any z ≤ x ≤ π↑(z), Conditions (ii) and (iii) ensure

that z = π↓(z) ≤ π↓(x) ≤ π↓(π↑(z)) = π↓(z) = z, so that π↓(x) = z. We conclude that

the fibers of π↑ (or equivalently of π↓) are intervals of P , and that π↑ (resp. π↓) in-

deed maps an element of P to the maximal (resp. minimal) element of its fiber.

Since π↑ and π↓ are order preserving, this shows that the fibers indeed define an

order congruence.

2.3.2 Congruences of the weak order

Consider a lattice congruence ≡ of the weak order whose up and down projections

are denoted by π↑ and π↓ respectively. We will need the following elementary

properties of ≡. Recall, the notation xWI means that we are considering x in

W I .

Lemma 2.3.3 For any coset xWI and any s ∈ I, we have x ≡ xs ⇐⇒ xsw◦,I ≡ xw◦,I .

Proof. Assume x ≡ xs. As x ∈ W I and s ∈ I, we have xs 6≤ xsw◦,I . Therefore,

xsw◦,I = x∨xsw◦,I ≡ xs∨xsw◦,I = xw◦,I . The reverse implication can be proved

similarly or applying the anti-automorphism x→ xw◦.
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We will need a refined version of the previous lemma for cosets of a rank 2 parabolic

subgroup. Consider a coset xW{s,t} with s, t ∈ SrDR(x). It consist of two chains

x ≤ xs ≤ · · · ≤ xtw◦,{s,t} ≤ xw◦,{s,t} and x ≤ xt ≤ · · · ≤ xsw◦,{s,t} ≤ xw◦,{s,t}

from x to xw◦,{s,t}. The following two lemmas are of same nature: they state that

a single congruence between two elements of xW{s,t} can force almost all elements

in xW{s,t} to be congruent. These lemmas are illustrated in Figure (2.8).

Lemma 2.3.4 For any coset xW{s,t}, if x ≡ xs or xsw◦,{s,t} ≡ xw◦,{s,t} then

x ≡ xs ≡ xst ≡ · · · ≡ xtw◦,{s,t} and xt ≡ xts ≡ · · · ≡ xsw◦,{s,t} ≡ xw◦,{s,t}.

Proof. Assume x ≡ xs. For any xt ≤ y ≤ xw◦,{s,t} we have xs ∨ y = xw◦,{s,t}.

Since x ≡ xs and ≡ is a lattice congruence, we get y = x ∨ y ≡ xs ∨ y = xw◦,{s,t}.

Now for any x ≤ z ≤ xtw◦,{s,t}, we have y ∧ z = x. Since y ≡ xw◦,{s,t} and ≡ is a

lattice congruence, we get z = xw◦,{s,t} ∧ z ≡ y ∧ z = x. The proof is similar if we

assume instead xsw◦,{s,t} ≡ xw◦,{s,t}.

x

xs xt

xtw◦{s, t} xsw◦{s, t}

xw◦{s, t}

−−−−−−−−−−−−−−→
x ≡ xs

x

xs xt

xtw◦{s, t} xsw◦{s, t}

xw◦{s, t}

x

xs xt

xtw◦{s, t} xsw◦{s, t}

xw◦{s, t}

−−−−−−−−−−−−−−→
xs ≡ xt

x

xs xt

xtw◦{s, t} xsw◦{s, t}

xw◦{s, t}

Figure 2.8: In a coset xW{s,t}, a single congruence may force many congruences.

See Lemma (2.3.4) for the congruence x ≡ xs (top) and Lemma (2.3.5) for the

congruence xs ≡ xt (bottom).



73

Lemma 2.3.5 For any coset xW{s,t}, if xs ≡ xt then x ≡ y for all y ∈ xW{s,t}.

Proof. Since xs ≡ xt, we have π↓(xs) = π↓(xt) and π↑(xs) = π↑(xt). Using that

π↓(xs) ≤ xs ≤ π↑(xs) and π↓(xt) ≤ xt ≤ π↑(xs), we obtain that

π↓(xs) ≤ xs ∧ xt = x ≤ xw◦,{s,t} = xs ∨ xt ≤ π↑(xs).

Since the congruence class of xs is the interval [π↓(xs), π↑(xs)], it certainly contains

all the coset xW{s,t}. We conclude that x ≡ y for all y ∈ xW{s,t}.

Throughout the end of this section, we write x y when x ≤ y and x ≡ y. In

other words, x y ⇐⇒ x ≤ y ≤ π↑(x) ⇐⇒ π↓(y) ≤ x ≤ y. Note that the

relation is transitive (as the intersection of two transitive relations) and stable

by meet and join (as ≤ is a lattice and ≡ a lattice congruence).

The goal of the following statements is to show that one can “translate faces along

congruence classes”. We make this statement precise in the following lemmas. The

next lemma is a rephrasing of (Reading, 2005, Proposition 2.2) with an alternative

proof.

Lemma 2.3.6 For any x ∈ W and t ∈ S rDR(x) such that x 6≡ xt, there exists

a unique σ↑(x, t) ∈ S rDR

(
π↑(x)

)
such that xt π↑(x)σ↑(x, t).

Proof. To prove the existence of σ↑(x, t), we work by induction on the length of a

minimal path from x to π↑(x) in weak order. If x = π↑(x), then σ↑(x, t) = t meets

our criteria. We now assume that there exists s ∈ S rDR(x) such that x xs π↑(x).

Let x′ = xtw◦,{s,t} and t′ = w◦,{s,t}tw◦,{s,t}. We get from Lemma (2.3.4) that x ≡ x′,

thus π↑(x) = π↑(x′) and xt xw◦,{s,t} = x′t′. Since x 6≡ xt, this also ensures

that x′ 6≡ x′t′. Thus the length of a minimal path from between x′t′ and π↑(x′) is

strictly smaller than the length of a minimal path between x and π↑(x). Therefore,

by induction hypothesis, there exists σ↑(x′, t′) ∈ S such that x′t′ π↑(x′)σ↑(x′, t′).
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We therefore obtain that

xt x′t′ π↑(x′)σ↑(x′, t′) = π↑(x)σ↑(x′, t′),

and conclude that σ↑(x, t) = σ↑(x′, t′) meets our criteria.

To prove uniqueness, assume that there exist r 6= s ∈ S r DR(y) which both

satisfy xt π↑(x)r and xt π↑(x)s. This implies that π↑(x)r ≡ xt ≡ π↑(x)s, so

that π↑(x) ≡ π↑(x)r ≡ π↑(x)s by application of Lemma (2.3.5). We would therefore

obtain that x ≡ π↑(x) ≡ π↑(x)r ≡ xt, a contradiction.

Lemma 2.3.7 For any coset xWI , the set Σ↑(x, I) :=
{
σ↑(x, t) | t ∈ I, x 6≡ xt

}
is the unique subset of S rDR

(
π↑(x)

)
such that xw◦,I π↑(x)w◦,Σ↑(x,I).

Proof. Split I into I≡ t I6≡ where I≡ := {t ∈ I | x ≡ xt} and I6≡ := {t ∈ I | x 6≡ xt}.

Since is stable by join, we get

xw◦,I =
( ∨
t∈I≡

xt

)
∨
( ∨
t∈I 6≡

xt

)
π↑(x) ∨

( ∨
t∈I6≡

π↑(x)σ↑(x, t)
)

= π↑(x)w◦,Σ↑(x,I).

To prove unicity, we observe that there already is a unique maximal subset Σ

of S rDR

(
π↑(x)

)
such that xw◦,I π↑(x)w◦,Σ since is stable by join. Consider

now any subset Σ′ of Σ with this property. Since π↑(x)w◦,Σ′ ≡ xw◦,I ≡ π↑(x)w◦,Σ,

we obtain

π↑(x)w◦,ΣrΣ′ = π↑(x)w◦,ΣrΣ′ ∧ π↑(x)w◦,Σ ≡ π↑(x)w◦,ΣrΣ′ ∧ π↑(x)w◦,Σ′ = π↑(x).

Since π↑(x) is maximal in its congruence class, this implies that w◦,ΣrΣ′ = e so

that Σ′ = Σ.

Using similar arguments as in the previous lemmas, or applying the anti-automor-

phism x 7→ xw◦, we deduce the following statement, similar to Lemma (2.3.7).

Lemma 2.3.8 For any coset xWI , there is a unique subset Σ↓(x, I) of DR

(
π↓(xw◦,I)

)
such that π↓(xw◦,I)w◦,Σ↓(x,I) x.
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Remark 2.3.9 Consider a coset xWI . If π↑(x) = x then σ↑(x, t) = t for all t ∈ I

and thus Σ↑(x, I) = I. Similarly, if π↓(xw◦,I) = xw◦,I then Σ↓(x, I) = I.

We will furthermore need the following properties of σ↑(x, t) and Σ↑(x, I).

Lemma 2.3.10 For any coset xWI and any t ∈ I, we have

• if x ≡ xt then xtw◦,I ≡ π↑(x)w◦,Σ↑(x,I),

• if x 6≡ xt then xtw◦,I ≡ π↑(x)σ↑(x, t)w◦,Σ↑(x,I).

In other words, either

xtw◦,I ≡ xw◦,I ≡ π↑(x)w◦,Σ↑(x,I) or xtw◦,I ≡ π↑(x)σ↑(x, t)w◦,Σ↑(x,I).

Proof. If x ≡ xt, Lemmas (2.3.3) and (2.3.7) ensure that xtw◦,I ≡ xw◦,I ≡ π↑(x)w◦,Σ↑(x,I).

Assume now that x 6≡ xt. Observe that we have π↓(π↑(x)w◦,Σ↑(x,I)) = π↓(xw◦,I)

since xw◦,I ≡ π↑(x)w◦,Σ↑(x,I). Consider the subsets

X := Σ↓(x, I) and Y := Σ↓(π↑(x),Σ↑(x, I)).

of DR(π↓(xw◦,I)). By definition of Σ↓, we have

π↓(xw◦,I)w◦,X ≡ x ≡ π↑(x) ≡ π↓(π↑(x)w◦,Σ↑(x,I))w◦,Y = π↓(xw◦,I)w◦,Y ,

We therefore obtain that

π↓(xw◦,I)w◦,X∪Y = π↓(xw◦,I)w◦,X ∧ π↓(xw◦,I)w◦,Y ≡ π↓(xw◦,I)w◦,X

which in turns implies that Y ⊆ X. It follows that there is t′ such that

xt′w◦,I ≡ π↑(x)σ↑(x, t)w◦,Σ↑(x,I).

Observe that

xt′w◦,I ≡ π↑(x)σ↑(x, t)w◦,Σ↑(x,I) = π↑(x)σ↑(x, t)w◦,Σ↑(x,I) ∨π↑(x)σ↑(x, s) ≡ xt′w◦,I ∨xs

for all s ∈ I r {t} such that x 6≡ xs. Since xt′w◦,I 6≡ xw◦,I by Lemma (2.3.3), we

obtain that t′ = t and therefore xtw◦,I ≡ π↑(x)σ↑(x, t)w◦,Σ↑(x,I).
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2.3.3 Congruences of the facial weak order

Based on the properties established in the previous section we now show that the

lattice congruences of the weak order naturally extend to lattice congruences of

the facial weak order. We start from a lattice congruence ≡ of the weak order

whose up and down projections are denoted by π↑ and π↓ respectively. We then

define two maps Π↑ : PW → PW and Π↓ : PW → PW by

Π↑(xWI) = π↑(x)WΣ↑(x,I) and Π↓(xWI) = π↓(xw◦,I)WΣ↓(x,I)

where Σ↑(x, I) and Σ↓(x, I) are the subsets of S defined by Lemmas (2.3.7) and (2.3.8).

Note that we again take the liberty here to write Π↓(xWI) = π↓(xw◦,I)WΣ↓(x,I) in-

stead of Π↓(xWI) = π↓(xw◦,I)w◦,Σ↓(x,I)WΣ↓(x,I) to make apparent the symmetry

between Π↑ and Π↓.

It immediately follows from Lemmas (2.3.7) and (2.3.8) that Π↑(xWI) is the

biggest parabolic coset in the interval [π↑(x), π↑(xw◦,I)] containing π↑(x) and sim-

ilarly Π↓(xWI) is the biggest parabolic coset in the interval [π↓(x), π↓(xw◦,I)] con-

taining π↓(xw◦,I).

Theorem 2.3.11 The maps Π↑ and Π↓ fulfill the following properties:

(i) Π↓(xWI) ≤ xWI ≤ Π↑(xWI) for any coset xWI .

(ii) Π↑◦ Π↑= Π↑◦ Π↓= Π↑ and Π↓◦ Π↓= Π↓◦ Π↑= Π↓.

(iii) Π↑ and Π↓ are order preserving.

Therefore, the fibers of the maps Π↑ and Π↓ coincide and define a lattice congru-

ence of the facial weak order.
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Proof. Using the characterization of the facial weak order given in Theorem (2.2.14) (iii),

we obtain that xWI ≤ Π↑(xWI) since x ≤ π↑(x) and xw◦,I ≤ π↑(x)w◦,Σ↑(x,I). Sim-

ilarly, Π↓(xWI) ≤ xWI since π↓(xw◦,I)w◦,Σ↓(x,I) ≤ x and π↓(xw◦,I) ≤ xw◦,I . This

shows (i).

For (ii), it follows from the definition that Π↑
(
Π↑(xWI)

)
= Π↑

(
π↑(x)WΣ↑(x,I)

)
is

the biggest parabolic coset in the interval
[
π↑
(
π↑(x)

)
, π↑
(
π↑(x)w◦,Σ↑(x,I)

)]
contain-

ing π↑
(
π↑(x)

)
. However, we have π↑

(
π↑(x)

)
= π↑(x) and π↑

(
π↑(x)w◦,Σ↑(x,I)

)
= π↑(xw◦,I)

since xw◦,I ≡ π↑(x)w◦,Σ↑(x,I). We conclude that Π↑◦ Π↑= Π↑. The proof is similar

for the other equalities of (ii).

To prove (iii), it is enough to show that Π↑ is order-preserving on covering re-

lations of the facial weak order (it is then order preserving on any weak order

relation by transitivity, and the result for Π↓ can be argued similarly or using

the anti-automorphisms of Proposition (2.2.18)). Therefore, we consider a cover

relation xWI <· yWJ in facial weak order and prove that Π↑(xWI) ≤ Π↑(yWJ).

It is immediate if the cover relation xWI <· yWJ is of type (1), that is, if x = y

and J = I ∪ {s}. Indeed, it follows from the characterization in terms of biggest

parabolic subgroups and from the fact that π↑(x) = π↑(y) and π↑(xw◦,I) ≤ π↑(yw◦,J).

Consider now a cover relation xWI <· yWJ of type (2), that is, with y = xw◦,Iw◦,J

and J = I r {s}. Note that in this case π↑(x) ≤ π↑(y) and π↑(xw◦,I) = π↑(yw◦,J).

We therefore need to show that π↑(x)w◦,Σ↑(x,I) ≤ π↑(y)w◦,Σ↑(y,J).

For t ∈ S, define t? :=w◦,Iw◦,Jtw◦,Jw◦,I so that the equality xw◦,I = yw◦,J implies

the equality ytw◦,J = xt?w◦,I . Let

J≡ := {t ∈ J | ytw◦,J ≡ yw◦,J} = {t ∈ J | xt?w◦,I ≡ xw◦,I} ,

J6≡ := {t ∈ J | ytw◦,J 6≡ yw◦,J} = {t ∈ J | xt?w◦,I 6≡ xw◦,I} ,
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and consider

K :=
{
w◦,Σ↑(x,I)σ

↑(x, t?)w◦,Σ↑(x,I) | t ∈ J6≡
}

and z :=π↑(x)w◦,Σ↑(x,I)w◦,K .

Lemma (2.3.10) ensures that

ytw◦,J = xt?w◦,I ≡


π↑(x)w◦,Σ↑(x,I) if t ∈ J≡,

π↑(x)σ↑(x, t?)w◦,Σ↑(x,I) if t ∈ J6≡.

Therefore

y =
∧
t∈J

ytw◦,J =
∧
t∈J≡

ytw◦,J ∧
∧
t∈J 6≡

ytw◦,J

≡ π↑(x)w◦,Σ↑(x,I) ∧
∧
t∈J 6≡

π↑(x)σ↑(x, t?)w◦,Σ↑(x,I)

= π↑(x)w◦,Σ↑(x,I)
∧
t∈J 6≡

w◦,Σ↑(x,I)σ
↑(x, t?)w◦,Σ↑(x,I)

= π↑(x)w◦,Σ↑(x,I)w◦,K = z.

By Lemma (2.3.7) applied to the coset zWK , there exists Σ↑(z,K) such that

π↑(x)w◦,Σ↑(x,I) = zw◦,K π↑(z)w◦,Σ↑(z,K) = π↑(y)w◦,Σ↑(z,K).

Since π↑(x)w◦,Σ↑(x,I) ≡ xw◦,I = yw◦,J , it follows that Σ↑(y, J) = Σ↑(z,K) by unique-

ness in Lemma (2.3.7) applied to the coset yWJ . We get that π↑(x)w◦,Σ↑(x,I) ≤ π↑(y)w◦,Σ↑(y,J)

and thus that Π↑(xWI) ≤ Π↑(yWJ).

We conclude by Lemma (2.3.2) that the fibers of Π↑ and Π↓ indeed coincide and

define a lattice congruence of the facial weak order.

2.3.4 Properties of facial congruences

In this section, we gather some properties of the facial congruence defined in

Theorem (2.3.11).
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Basic properties

We first come back to the natural definition of given in the introduction of

Section (2.3).

Proposition 2.3.12 For any cosets xWI , yWJ ∈ PW ,

xWI yWJ ⇐⇒ x ≡ y and xw◦,I ≡ yw◦,J .

Proof. If xWI yWJ , then Π↑(xWI) = Π↑(yWJ) so that π↑(x) = π↑(y) and x ≡ y.

Moreover, Π↓(xWI) = Π↓(yWJ) so that π↓(xw◦,I) = π↓(yw◦,J) and xw◦,I ≡ yw◦,J .

Therefore, the -congruence class of xWI determines the ≡-congruence classes

of x and of xw◦,I . Reciprocally, we already observed that Π↑(xWI) is the biggest

parabolic coset in the interval [π↑(x), π↑(xw◦,I)] containing π↑(x). If x ≡ y and

xw◦,I ≡ yw◦,J , we obtain that Π↑(xWI) = Π↑(yWJ). Therefore, the -congruence

class of xWI only depends on the ≡-congruence classes of x and of xw◦,I .

Corollary 2.3.13 For any x, y ∈ W , we have x ≡ y ⇐⇒ xW∅ yW∅.

Therefore, each congruence class γ of ≡ is the intersection ofW with a congruence

class Γ of .

This corollary says that the congruence of the facial weak order indeed extends

the congruence≡ of the weak order. Nevertheless, observe that not all congruences

of the facial weak order arise as congruences of the weak order (consider for

instance the congruence on PA2 that only contracts sWt with stW∅).

Join-irreducible contractions

Recall that an element x of a finite lattice L is join-irreducible if it covers ex-

actly one element x? (see Section (2.2.5)). The following statement can be found

e.g. in (Freese et al., 1995, Lemma 2.32). For a lattice congruence ≡ on L
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and y ∈ L, let D≡(y) denote the set of join-irreducible elements x ≤ y not

contracted by ≡, that is such that x? 6≡ x. For y and z in L, we then have

that y ≡ z ⇐⇒ D≡(y) = D≡(z) and lattice quotient L/≡ is isomorphic to the

inclusion poset on {D≡(y) | y ∈ L}. In other words, the lattice congruence ≡

is characterized by the join-irreducible elements of L that it contracts. Even

if this characterization is not always convenient, it is relevant to describe the

join-irreducibles of the facial weak order contracted by in terms of those con-

tracted by ≡.

Proposition 2.3.14 The join-irreducible cosets of the facial weak order con-

tracted by are precisely:

• the cosets xW∅ where x is a join-irreducible element of the weak order con-

tracted by ≡,

• the cosets xW{s} where xs is a join-irreducible element of the weak order

contracted by ≡.

Proof. The join-irreducible cosets of the facial weak order are described in Propo-

sition (2.2.27). Now xW∅ is contracted by when xW∅ (xW∅)? = {x?, x},

that is, when x ≡ x? by Proposition (2.3.12). Similarly, xW{s} is contracted by

when xW{s} (xW{s})? = {x}, that is, when xs ≡ x by Proposition (2.3.12).

Up and bottom cosets of facial congruence classes

The next statements deal with maximal and minimal cosets in their facial con-

gruence classes.
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Proposition 2.3.15 For any coset xWI , we have

(i) Π↑(xWI) = xWI ⇐⇒ π↑(x) = x,

(ii) Π↓(xWI) = xWI ⇐⇒ π↓(xw◦,I) = xw◦,I .

Proof. We only prove (i), the proof of (ii) being symmetric. Recall the definition

Π↑(xWI) = π↑(x)WΣ↑(x,I). Therefore, Π↑(xWI) = xWI clearly implies that π↑(x) = x.

Reciprocally, if π↑(x) = x, then Σ↑(x, I) = I by the uniqueness of Σ↑(x, I) in

Lemma (2.3.7). Therefore Π↑(xWI) = π↑(x)WΣ↑(x,I) = xWI .

Call an element x in W a ≡-singleton if it is alone in its ≡-congruence class,

i.e., such that π↓(x) = x = π↑(x). Similarly, call a coset xWI a facial -singleton

if it is alone in its -congruence class, i.e., such that Π↓(xWI) = xWI = Π↑(xWI).

Proposition 2.3.16 (i) A coset xWI is a facial -singleton if and only if π↑(x) = x

and π↓(xw◦,I) = xw◦,I .

(ii) If x is a ≡-singleton, then xWI is a facial -singleton for any I ⊂ S rDR(x).

Moreover, xw◦,JWJ is a facial -singleton for any J ⊆ DR(x).

Proof. (i) is an immediate consequence of Proposition (2.3.15). To prove (ii),

we just need to show that if x is a ≡-singleton, then π↓(xw◦,I) = xw◦,I for

any I ⊆ S rDR(x). If not, there would exist t ∈ S such that xtw◦,I xw◦,I .

If t ∈ I, then x ≡ xt by Lemma (2.3.3). If t /∈ I, then xt ≤ x. Since ≡ is a lattice

congruence and xtw◦,I ≡ xw◦,I ,

x = x ∧ xw◦,I ≡ x ∧ xtw◦,I = xt.

In both cases, we contradict the assumption that x is a ≡-singleton. We prove

similarly that if x is a ≡-singleton, then π↑(xw◦,J) = xw◦,J for any J ⊆ DR(x).
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Remark 2.3.17 Proposition (2.3.16) (ii) can be interpreted as follows: if the

weak order minimum or maximum element of a coset xWI is a ≡-singleton, then

the coset xWI is a facial -singleton. In fact, we conjecture that a coset is a facial

-singleton if it contains a ≡-singleton.

2.3.5 Root and weight inversion sets for facial congruence classes

As in Section (2.2.2), we now introduce and study the root and weight inversion

sets of the congruence classes of . Root inversion sets are then used to obtain

equivalent characterizations of the quotient lattice of the facial weak order by .

Weight inversion sets are used later in Section (2.3.6) to describe all faces of

N. Reading’s fan F≡ associated to ≡.

Definition 2.3.18 The root inversion set R(Γ) and the weight inversion set W(Γ)

of a congruence class Γ of are defined by

R(Γ) =
⋂

zWK∈Γ
R(zWK) and W(Γ) =

⋃
zWK∈Γ

W(zWK).

Proposition 2.3.19 Consider a congruence class Γ = [xWI , yWJ ] of .

(i) The cones generated by the root and weight inversion sets of Γ are polar to

each other:

cone(R(Γ))� = cone(W(Γ)).

(ii) The positive and negative parts of the root inversion set of Γ coincide with

that of xWI and yWJ :

R(Γ) ∩ Φ+ = R(xWI) ∩ Φ+ and R(Γ) ∩ Φ− = R(yWJ) ∩ Φ−.

(iii) The root and weight inversion sets of Γ can be computed from those of xWI

and yWJ by

R(Γ) = R(xWI) ∩R(yWJ) and W(Γ) = W(xWI) ∪W(yWJ).
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Proof. Since the polar of a union is the intersection of the polars, (i) is a direct

consequence of Proposition (2.2.7) (iii).

For (ii), consider zWK ∈ Γ. Since xWI ≤ zWK ≤ yWJ , we have by Re-

mark (2.2.15)

R(xWI) ∩ Φ+ ⊆ R(zWI) ∩ Φ+ and R(zWK) ∩ Φ− ⊇ R(yWJ) ∩ Φ−.

Therefore,

R(Γ) ∩ Φ+ =
⋂

zWK∈Γ
R(zWI) ∩ Φ+ = R(xWI) ∩ Φ+,

and R(Γ) ∩ Φ− =
⋂

zWK∈Γ
R(zWI) ∩ Φ− = R(yWJ) ∩ Φ−.

Finally, for (iii), we have already R(Γ) ⊆ R(xWI) ∩ R(yWJ). For the other

inclusion, we have

R(xWI) ∩R(yWJ) ∩ Φ+ ⊆ R(xWI) ∩ Φ+ = R(Γ) ∩ Φ+ ⊆ R(Γ),

and R(xWI) ∩R(yWJ) ∩ Φ− ⊆ R(yWJ) ∩ Φ− = R(Γ) ∩ Φ− ⊆ R(Γ).

The equality on weights then follows by polarity.

The following theorem is an analogue of Theorem (2.2.14). It provides charac-

terizations of the quotient lattice of the facial weak order by in terms of root

inversion sets of the congruence classes, and of comparisons of the minimal and

maximal elements in the congruence classes.

Theorem 2.3.20 The following assertions are equivalent for two congruence

classes Γ = [xWI , yWJ ] and Γ′ = [x′WI′ , y
′WJ ′ ] of :

(i) Γ ≤ Γ′ in the quotient of the facial weak order by ,

(ii) xWI ≤ x′WI′,
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(iii) yWJ ≤ y′WJ ′,

(iv) xWI ≤ y′WJ ′,

(v) x ≤ y′ and xw◦,I ≤ y′w◦,J ′,

(vi) R(Γ)rR(Γ′) ⊆ Φ− and R(Γ′)rR(Γ) ⊆ Φ+,

(vii) R(Γ) ∩ Φ+ ⊆ R(Γ′) ∩ Φ+ and R(Γ) ∩ Φ− ⊇ R(Γ′) ∩ Φ−.

Proof. By definition, we have Γ ≤ Γ′ in the quotient lattice if and only if there

exists zWK ∈ Γ and wK′ ∈ Γ′ such that zWK ≤ z′WK′ . Therefore, any of Con-

ditions (ii), (iii), and (iv) implies (i). Reciprocally, since Π↓(zWK) = xWI and

Π↓(z′WK′) = x′WI′ , and Π↓ is order preserving, we get that (i) implies (ii). Sim-

ilarly, since Π↑(zWK) = yWJ , Π↑(z′WK′) = y′WJ ′ , and Π↑ is order preserving, we

get that (i) implies (iii). Since xWI ≤ yWJ and x′WI′ ≤ y′WJ ′ , either of (ii) and

(iii) implies (iv). Moreover (iv) ⇐⇒ (v) by Theorem (2.2.14). We thus already

obtained that (i)⇐⇒ (ii)⇐⇒ (iii)⇐⇒ (iv)⇐⇒ (v).

We now prove that (i) ⇐⇒ (vii). Assume first that Γ ≤ Γ′. Since (i) implies (ii)

and (iii), we have xWI ≤ x′WI′ and yWJ ≤ y′WJ ′ . By Remark (2.2.15) and Propo-

sition (2.3.19) (ii), we obtain

R(Γ) ∩ Φ+ = R(xWI) ∩ Φ+ ⊆ R(x′WI′) ∩ Φ+ = R(Γ′) ∩ Φ+,

and R(Γ) ∩ Φ− = R(yWJ) ∩ Φ− ⊇ R(y′WJ ′) ∩ Φ− = R(Γ′) ∩ Φ−.

Reciprocally, assume that (vii) holds. By Proposition (2.3.19) (ii), we have

R(xWI) ∩ Φ+ ⊆ R(x′WI′) ∩ Φ+ and R(yWJ) ∩ Φ− ⊇ R(y′WJ ′) ∩ Φ−.

Since xWI ≤ yWJ and x′WI′ ≤ y′WJ ′ , we obtain by Remark (2.2.15) that

R(xWI) ∩ Φ+ ⊆ R(x′WI′) ∩ Φ+ ⊆ R(y′WJ ′) ∩ Φ+

and R(xWI) ∩ Φ− ⊆ R(yWJ) ∩ Φ− ⊇ R(y′WJ ′) ∩ Φ−.
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Again by Remark (2.2.15), we obtain that xWI ≤ y′WJ ′ , and thus that Γ ≤ Γ′

since (iv) implies (i). This proves that (i)⇐⇒ (vii).

This concludes the proof as the equivalence (vii)⇐⇒ (vi) is immediate.

2.3.6 Congruences and fans

Consider a lattice congruence ≡ of the weak order and the corresponding congru-

ence of the facial weak order. N. Reading proved in (Reading, 2005, Propo-

sition 5.2) that ≡ naturally defines a complete fan which coarsens the Coxeter

fan. Namely, for each congruence class γ of ≡, consider the cone Cγ obtained by

gluing the maximal chambers cone(x(∇)) of the Coxeter fan corresponding to the

elements x in γ. It turns out that each of these cones Cγ is convex and that the

collection of cones {Cγ | γ ∈ W/≡}, together with all their faces, form a complete

fan which we denote by F≡.

We now use the congruence of the facial weak order to describe all cones of F≡
(not only the maximal ones). This shows that the lattice structure on the maximal

faces of F≡ extends to a lattice structure on all faces of the fan F≡. Our description

relies on the weight inversion sets defined in the previous section.

Proposition 2.3.21 For a congruence class γ of ≡ and the corresponding con-

gruence class Γ of such that γ = W ∩ Γ (see Corollary (2.3.13)), we have

Cγ =
⋃
x∈γ

cone(x(∇)) = cone(W(Γ)).

Proof. We have

Cγ =
⋃
x∈γ

cone(x(∇)) =
⋃

x∈W∩Γ
cone(W(x)) =

⋃
xWI∈Γ

cone(W(xWI)) = cone(W(Γ)).
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Theorem 2.3.22 The collection of cones {cone(W(Γ)) | Γ ∈ PW/ } forms the

complete fan F≡.

Proof. Denote by C the collection of cones {cone(W(Γ)) | Γ ∈ PW/ }. The rela-

tive interiors of the cones of C form a partition of the ambient space V , since is

a congruence of the Coxeter complex PW . Similarly, the relative interiors of the

cones of F≡ form a partition of the ambient space V since we already know that F≡
is a complete fan (Reading, 2005). Therefore, we only have to prove that each cone

of F≡ is a cone of C. First, Proposition (2.3.21) ensures that the full-dimensional

cones of C are precisely the full-dimensional cones of F≡. Consider now another

cone F of F≡, and let C and C ′ be the minimal and maximal full-dimensional

cones of F≡ containing F (in the order given by ≤ /≡). Since C and C ′ are

full-dimensional cones of F≡, there exist congruence classes Γ and Γ′ of such

that C = cone(W(Γ)) and C ′ = cone(W(Γ′)). One easily checks that the Coxeter

cones contained in the relative interior of F are precisely the cones cone(W(xWI))

for the cosets xWI such that x ∈ Γ while xw◦,I ∈ Γ′. By Proposition (2.3.12),

these cosets form a congruence class Ω of . It follows that F = cone(W(Ω)) ∈ C,

thus concluding the proof.

Corollary 2.3.23 A coset xWI is a facial -singleton if an only if cone(W(xWI))

is a cone of F≡.

2.3.7 Two examples: Facial boolean and Cambrian lattices

To illustrate the results in this section, we revisit two relevant families of lattice

congruences of the weak order, namely the descent congruence and the Cambrian

congruences (Reading, 2006).
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Figure 2.9: The descent congruence classes of the standard parabolic cosets in

type A2 (left) and the resulting quotient (right).

Facial boolean lattices

The descent congruence is the congruence of the weak order defined by x ≡des y

if and only if DL(x) = DL(y). The corresponding up and down projections are

given by π↓(x) = w◦,DL(x) and π↑(x) = w◦w◦,SrDL(x). The quotient of the weak

order by ≡des is isomorphic to the boolean lattice on S. The fan Fdes
≡ is given by

the arrangement of the hyperplanes orthogonal to the simple roots of ∆. It is the

normal fan of the parallelepiped Para(W ) generated by the simple roots of ∆.

Denote by des the facial weak order congruence induced by ≡des as defined in

Section (2.3.3). According to Theorem (2.3.22), the des congruence classes cor-

respond to all faces of the parallelepiped Para(W ).

In the next few statements, we provide a direct criterion to test whether two cosets

are des-congruent. For this, we need to extend to all cosets the notion of descent

sets.
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Figure 2.10: The root descent sets of the standard parabolic cosets in type A2

(left) and A3 (right).

Definition 2.3.24 Let the (left) root descent set of a coset xWI be the set of

roots

D(xWI) := R(xWI) ∩ ±∆ ⊆ Φ.

Figure (2.10) illustrates the root descent sets in type A2 (left) and A3 (right). For

the latter, we have just discarded the interior triangles in each root inversion set

in Figure (2.7).

Notice that the simple roots in the inversion set N(x) precisely correspond to the

descent set DL(x):

∆ ∩N(x) = {αs | s ∈ DL(x)} = {αs | s ∈ S, `(sx) < `(x)} .

Similar to Proposition (2.2.10), the next statement concerns the root descent

set D(xW∅) for x ∈ W . For brevity we write D(x) instead of D(xW∅).
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Proposition 2.3.25 For any x ∈ W , the root descent set D(x) has the following

properties.

(i) D(x) =
(
∆ ∩N(x)

)
∪ −(∆rN(x)). In other words,

D(x) ∩ Φ+ =
(
∆ ∩N(x)

)
and D(x) ∩ Φ− = −

(
∆rN(x)

)
.

(ii) D(xw◦) = −D(x) and D(w◦x) = w◦
(

D(x)
)
.

Proof. The results follow immediately from Proposition (2.2.10) by intersecting

with ±∆ appropriately.

As in Proposition (2.2.12) and Corollary (2.2.13), the root descent set of a coset xWI

can be computed from that of its minimal and maximal length representatives x

and xw◦,I .

Proposition 2.3.26 The root and weight inversion sets of xWI can be computed

from those of x and xw◦,I by D(xWI) = D(x) ∪D(xw◦,I). In other words,

D(xWI) ∩ Φ− = D(x) ∩ Φ− and D(xWI) ∩ Φ+ = D(xw◦,I) ∩ Φ+.

Proof. Follow immediately from Proposition (2.2.12) and Corollary (2.2.13) by

intersecting with ±∆ appropriately.

From the previous propositions, we obtain that the des-equivalence class of xWI

is determined by the root descent set D(xWI).

Proposition 2.3.27 For any cosets xWI , yWJ , we have xWI
des yWJ if and

only if D(xWI) = D(yWJ).

Proof. As observed in Proposition (2.3.12), the des-congruence class of xWI only

depends on the ≡des-congruence class of x and xw◦,I , and thus on the descent
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sets DL(x) and DL(xw◦,I). By Propositions (2.3.25) (i) and (2.3.26), the root

descent set D(xWI) and the descent sets DL(x) and DL(xw◦,I) determine each

other. We conclude that the des-equivalence class of xWI is determined by the

root descent set D(xWI).

Finally, we observe that the facial des-singletons correspond to the bottom and

top faces of the W -permutahedron.

Proposition 2.3.28 A coset xWI is a facial des-singleton if and only if x = e

or xw◦,I = w◦.

Proof. As already mentioned, the up and down projection maps of the descent

congruence are given by π↓(x) = w◦,DL(x) and π↑(x) = w◦w◦,SrDL(x). From Propo-

sition (2.3.16), we therefore obtain that a coset xWI is a singleton if and only

if w◦w◦,SrDL(x) = x and w◦,DL(xw◦,I) = xw◦,I . The result follows.

Example 2.3.29 In type A, the descent vector of an ordered partition λ of [n]

is the vector des(λ) ∈ {−1, 0, 1}n−1 given by

des(λ)i =



−1 if λ−1(i) < λ−1(i+ 1),

0 if λ−1(i) = λ−1(i+ 1),

1 if λ−1(i) > λ−1(i+ 1).

These descent vectors where used by J.-C. Novelli and J.-Y. Thibon in (Novelli

& Thibon, 2006) to see that the facial weak order on the cube is a lattice. See

also (Chatel & Pilaud, 2014).

Facial Cambrian lattices

Fix a Coxeter element c, i.e., the product of all simple reflections in S in an

arbitrary order. A simple reflection s ∈ S is initial in c if `(sc) < `(c). For s
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initial in c, note that scs is another Coxeter element for W while sc is a Coxeter

element for WSr{s}.

In (Reading, 2006; Reading, 2007b), N. Reading defines the c-Cambrian lattice

as a lattice quotient of the weak order (by the c-Cambrian congruence) or as a

sublattice of the weak order (induced by c-sortable elements). There are several

ways to present his constructions, we choose to start from the projection maps of

the c-Cambrian congruence (as we did in the previous sections). These maps are

defined by an induction both on the length of the elements and on the rank of the

underlying Coxeter group. Namely, define the projection πc↓ : W → W inductively

by πc↓ (e) = e and for any s initial in c,

πc↓ (w) =


s · πscs↓ (sw) if `(sw) < `(w)

πsc↓ (w〈s〉) if `(sw) > `(w),

where w = w〈s〉 · 〈s〉w is the unique factorization of w such that w〈s〉 ∈ WSr{s} and

`(t〈s〉w) > `(〈s〉w) for all t ∈ S r {s}. The projection π↑c : W → W can then be

defined similarly, or by

π↑c(w) =
(
π

(c−1)
↓ (ww◦)

)
w◦.

N. Reading proves in (Reading, 2007b) that these projection maps π↑c and πc↓

satisfy the properties of Lemma (2.3.2) and therefore define a congruence ≡c of

the weak order called c-Cambrian congruence. The quotient of the weak order by

the c-Cambrian congruence is called the c-Cambrian lattice. It was also defined

as the smallest congruence contracting certain edges, see (Reading, 2006).

Cambrian congruences are relevant in the context of finite type cluster algebras,

generalized associahedra, and W -Catalan combinatorics. Without details, let us

point out the following facts:

(i) The fan F≡c associated to the c-Cambrian congruence ≡c is the Cambrian
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fan studied by N. Reading and D. Speyer (Reading & Speyer, 2009). Is was

proved to be the normal fan of a polytope by C. Hohlweg, C. Lange and

H. Thomas (Hohlweg et al., 2011). See also (Stella, 2013; Pilaud & Stump,

2015) for further geometric properties. The resulting polytopes are called

generalized associahedra.

(ii) These polytopes realize the c-cluster complexes of type W . When W is

crystallographic, these complexes were defined from the theory of finite type

cluster algebras of S. Fomin and A. Zelevinsky (Fomin & Zelevinsky, 2002;

Fomin & Zelevinsky, 2003).

(iii) The minimal elements in the c-Cambrian congruence classes are precisely the

c-sortable elements, defined as the elements w ∈ W such that there exists

nested subsets K1 ⊇ K2 ⊇ · · · ⊇ Kr of S such that w = cK1cK2 . . . cKr

where cK is the product of the elements in K in the order given by c.

The maximal elements of the c-Cambrian congruence classes are the c-

antisortable elements, defined as the elements w ∈ W such that ww◦ is

c−1-sortable. N. Reading proved in (Reading, 2007b) that the Cambrian

lattice is in fact isomorphic to the sublattice of the weak order induced by

c-sortable elements (or by c-antisortable elements). The c-sortable elements

are connected to various W -Catalan families: c-clusters, vertices of the c-

associahedron, W -non-crossing partitions. See (Reading, 2007a) for precise

definitions.

The results presented in this paper translate to the following statement.

Theorem 2.3.30 For any Coxeter element c of W , the facial c-Cambrian con-

gruence c on the Coxeter complex PW , defined by

xWI
c yWJ ⇐⇒ x ≡c y and xw◦,I ≡c yw◦,J ,



93

has the following properties:

(i) The c-Cambrian congruence ≡c is the restriction of the facial c-Cambrian

congruence c to W .

(ii) The quotient of the facial weak order by the facial c-Cambrian congruence c

defines a lattice structure on the cones of the c-Cambrian fan of (Reading &

Speyer, 2009), or equivalently on the faces of the c-associahedron of (Hohlweg

et al., 2011).

(iii) A coset xWI is minimal (resp. maximal) in its facial c-congruence class if

and only if xw◦,I is c-sortable (resp. x is c-antisortable). In particular, a

Coxeter cone cone(W(xWI)) is a cone of the c-Cambrian fan if and only

if x is c-antisortable and xw◦,I is c-sortable.

Proof. (i) is an application of Corollary (2.3.13). (iii) follows from Theorem (2.3.22)

and the fact that the c-Cambrian fan of (Reading & Speyer, 2009) is the normal

fan of the c-associahedron of (Hohlweg et al., 2011). Finally, (iii) is a direct

translation of Propositions (2.3.15) and (2.3.16).

Example 2.3.31 Examples of facial Cambrian congruences in type A2, A3,

and B3 are represented in Figures (2.11), (2.12), and (2.13) respectively.

Example 2.3.32 In type A, the Tamari congruence classes correspond to binary

trees, while the facial Tamari congruence classes correspond to Schröder trees. The

quotient of the facial weak order by the facial Tamari congruence was already

described in (Palacios & Ronco, 2006; Novelli & Thibon, 2006). In (Chatel &

Pilaud, 2014), G. Chatel and V. Pilaud describe the Cambrian counterparts of

binary trees and Schröder trees, and use them to introduce the facial type A

Cambrian lattices.
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Figure 2.11: The st-Cambrian congruence classes of the standard parabolic cosets

in type A2 (left) and the resulting quotient (right).

Remark 2.3.33 If ≡ is an order congruence on a poset (P,≤) with up and

down projections π↑ and π↓, the suborder of ≤ induced by π↓(P ) is isomorphic

to the quotient order P/≡ (see Definition (2.3.1)). When P is a lattice, P/≡

is also a lattice, so that (π↓(P ),≤) is a lattice. Although (π↓(P ),≤) is always

a meet subsemilattice of P , it is not necessarily a sublattice of P . In (Read-

ing, 2007b), N. Reading proved moreover that the weak order induced on π↓(W )

for the Cambrian congruence is actually a sublattice of the weak order on W .

In contrast, the facial weak order induced on Π↓(PW ) is not a sublattice of the

facial weak order on PW . An example already appears in A3 for c = srt. Con-

sider xWI = tsrWst and yWJ = stsrWs, so that xWI ∧ yWJ = z∧WK∧ = tsrWt.

We observe that xw◦,I = srt|srt = w◦ and yw◦,J = srt|sr are srt-sortable while

z∧w◦,K∧ = st|sr is not.
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CHAPTER III

HYPERPLANE ARRANGEMENTS AND ORIENTED MATROIDS

In this chapter we prepare the reader for our second article (Dermenjian et al.,

2019), which we present in Chapter 4. We start with an introduction to hyperplane

arrangements in § 3.1. In § 3.2 we survey the regions and faces of a hyperplane

arrangement and the face lattice of an arrangement. We then discuss in § 3.3 the

notion of an associated essential arrangement of an arrangement by decreasing the

dimension of the vector space without altering the structure of the face lattice,

thus removing unnecessary information from our arrangements. We then describe

another poset structure called the poset of regions on a hyperplane arrangement

in § 3.4, which is a generalization of the weak order on Coxeter groups through

the use of Coxeter arrangements. The poset of regions is the poset we extend to

the facial weak order on hyperplane arrangements in Chapter 4. In § 3.5 we define

the notion of simplicial arrangements, a large family of hyperplane arrangements

whose poset of regions is a lattice, which contain the Coxeter arrangements as a

subfamily. We then survey covectors in § 3.6, a representation of the faces of a

hyperplane arrangement using sign vectors relative to the normal vectors chosen

of our hyperplanes, allowing us to use algebraic techniques when working with

faces of an arrangement. In § 3.7 we survey four operations on covectors and their

interpretations in hyperplane arrangements. Finally, we survey oriented matroids,

a generalization of hyperplane arrangements, in § 3.8 using the covector axioms.
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The covector terminology and the generalization to oriented matroids will help

facilitate the proofs in Chapter 4. As with Chapter 1, no proofs are contained

in this chapter. For a more thorough background on the topics covered in this

chapter and for proofs, the reader is invited to consult the book “Arrangements

of Hyperplanes” by Orlik and Terao (Orlik & Terao, 1992), the book “Lectures

on Polytopes” by Ziegler (Ziegler, 1995), and the book “Oriented Matroids” by

Björner, Las Vergnas, Sturmfels, White and Ziegler (Björner et al., 1999).

3.1 Hyperplane arrangements

Let (V, 〈·, ·〉) be an n-dimensional real Euclidean vector space. A hyperplane is a

codimension 1 (dimension n−1) linear subspace of V that separates V into two dis-

tinct regions. A (central) hyperplane arrangement, or arrangement for short, is a

finite set A of hyperplanes in V which intersect the origin. As every hyperplane H

separates V into two distinct regions, we distinguish the regions by first choos-

ing some fixed nonzero vector eH normal to H, i.e., H = {v ∈ V | 〈eH , v〉 = 0}.

Then H+ = {v ∈ V | 〈eH , v〉 ≥ 0} is the positive half-space of the hyperplane H

and H− = {v ∈ V | 〈eH , v〉 ≤ 0} is the negative half-space of H. Note that the

choice of vectors eH are unique up to nonzero scalar multiplication.

Example 3.1.1 In Figure 3.1 are three examples of (central) hyperplane ar-

rangements. The first two arrangements in Figure 3.1 live in R2 and the third

arrangement in Figure 3.1 lives in R3.

In the first arrangement of Figure 3.1, a normal vector e to the only hyperplane H

is given. The positive half-space of H is the set H+ of points weakly above and

to the left of the hyperplane. Similarly, the negative half-space H− is the set of

points weakly below and to the right of the hyperplane. Note that these half-

spaces are dependent on the choice of e. If we had chosen e′ = −e as our normal
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e
H+

H−

Figure 3.1: Two central hyperplane arrangements in a 2-dimensional real Eu-

clidean vector space and a central hyperplane arrangement in a 3-dimensional

real Euclidean vector space. The arrangement on the left is simplicial but not

essential, the arrangement on the right is essential but not simplicial and the

arrangement in the middle is both essential and simplicial.

vector, then our half-spaces H+ and H− would be exchanged.

A large family of hyperplane arrangements are given by Coxeter groups. Consider

a finite Coxeter system (W,S) with root system Φ and positive roots Φ+. Let AW
denote the hyperplane arrangement given by

AW :=
{
Hα | α ∈ Φ+

}
.

The arrangement AW is known as a Coxeter arrangement. The type of a Coxeter

arrangement AW is the type of its underlying Coxeter group W .

Example 3.1.2 Figure 3.2 gives an example of the Coxeter arrangement for the

type A2 Coxeter group where S = {se1 , se3}, ∆ = {e1, e3} and Φ+ = {e1, e2, e3}.

The hyperplanes of an arrangement cut up the vector space into various connected

components which we survey in the following section.
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Figure 3.2: The type A2 Coxeter arrangement where R0 is the intersection of the

positive half-spaces of all hyperplanes.

3.2 Regions, faces and the face lattice

In this section we survey the notions of regions and faces of an arrangement.

Let A be an arrangement in an n-dimensional real Euclidean vector space V . The

set of regions RA of A consists of the connected components of V \ (∪H∈AH).

In other words, the regions are the closures of the connected components left

over when the hyperplanes are removed from the vector space. A face of an

arrangement A is the intersection of the closures of some regions in RA. Let

FA denote the set of faces of A, i.e., FA = {⋂R∈RR | R ⊆ RA}. Note that the

codimension 0 faces of A are the regions.

Example 3.2.1 Let A be the Coxeter arrangement of type A2 as in Figure 3.2.

Removing the hyperplanes in A from the vectors space R2 we are left with six

connected components. The closure of these six connected components are the
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regions (in blue)

RA = {R0, R1, R2, R3, R4, R5} .

The faces FA of this arrangement are given by the intersections of the six regions

in RA. For example, the face F0 is obtained by taking the intersection R0 ∩R1.

By taking arbitrary intersections we observe that there are 13 faces in total: the

closures of the six regions Ri, six codimension 1 faces denoted by the Fi, given in

red, and the centre codimension 2 face, {0}, in green.

The faces of the hyperplane arrangement A, together with the vector space V

itself, ordered by inclusion is a poset called the face lattice of A, denoted (FA,⊆).

The bottom element of this lattice is given by {0} since every face contains the

origin and the top element of this lattice is the vector space itself. In general,

when the arrangement is essential, the bottom element of (FA,⊆) is {0}, the top

element is the vector space V , the atoms are the rays and the coatoms are the

regions.

Example 3.2.2 Let A, A′, and A′′ be the three hyperplane arrangements in

Figure 3.1 respectively. In Figure 3.3 we give the Hasse diagrams for the face

lattice for each arrangement. The Hasse diagram for (FA,⊆) is in the top left, the

Hasse diagram for (FA′ ,⊆) is in the top right and the Hasse diagram for (FA′′ ,⊆)

is on the bottom of Figure 3.3 respectively.

3.3 Essential arrangements

Although hyperplane arrangements can live in any dimensional real Euclidean

vector space V , it is easier to work with arrangements that live in real Euclidean

vector spaces that have minimal dimension. It turns out, as we will see in this

section, we can decrease the dimension of the vector space V that an arrangement

lives in without changing the structure of the face lattice.
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Figure 3.3: The top left graph is the Hasse diagram of the face lattice of the

left-most hyperplane arrangement in Figure 3.1. The top right graph is the Hasse

diagram of the face lattice of the middle hyperplane arrangement in Figure 3.1.

Note that it is also the Hasse diagram of the face lattice of the Coxeter arrange-

ment of type A2 as in Figure 3.2. Finally, the bottom graph is the Hasse diagram

of the face lattice of the right-most hyperplane arrangement in Figure 3.1.
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The rank of an arrangement A, denoted rank(A), is the dimension of the linear

subspace V ′ spanned by the normal vectors eH for H ∈ A. If rank(A) = dim(V )

then the arrangement is said to be essential. We assume all arrangements to

be essential unless stated otherwise. We do not lose generality by restricting to

essential arrangements since for every arrangementA with rank r living in V ∼= Rn

(with r ≤ n) there is an associated essential arrangement A′ with rank r living

in V ′ ∼= Rr such that (FA,⊆) and (FA′ ,⊆) are isomorphic, see the discussion in

(Björner et al., 1999, Section 2.1).

Example 3.3.1 The first arrangement A in Figure 3.1 is not essential. There is

only one hyperplaneH inA whose normal vector e spans a 1-dimensional subspace

of R2 implying the rank of the first arrangement is 1 while the arrangement itself

lives in R2, a 2 dimensional space. Since rank(A) = 1 6= 2 = dim(V ), this first

arrangement is not essential. The associated essential arrangement ofA is given by

restricting our vector space to the space V ′ = {λe ∈ V | λ ∈ R}. This restriction

produces an arrangement A′, given in Figure 3.4, which also contains a single

hyperplane and separates V ′ into two segments. The face lattice of A′ is then

isomorphic to the face lattice of A whose Hasse diagram is on the top left of

Figure 3.3. The face lattice (FA′ ,⊆) has the point {0} (the hyperplane) as the

bottom element, the two line segments (two half-spaces) as the atoms, and the

vector space (the line) V ′ as the top element.

On the other hand, the other two arrangements in Figure 3.1 are essential. These

two arrangements live in R2 and R3 respectively and, by taking any choice of nor-

mal vectors to the hyperplanes in each arrangement, the rank of the arrangements

are 2 and 3 respectively. Therefore, since the ranks are equal to the dimensions

of their respective vector spaces, they are both essential.

Having described a lattice on the faces of the hyperplane arrangement, we next
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Figure 3.4: An associated essential hyperplane A′ to the left-most hyperplane

arrangement A in Figure 3.1.

describe another poset structure on hyperplane arrangements; this time using

regions.

3.4 Poset of regions

In this section we survey a poset structure on the regions of an arrangement which

is the generalization of the weak order on Coxeter groups. For a background on

orders, posets or lattices the reader is referred to Appendix A where we have

provided a brief introduction on order theory.

Let A be a hyperplane arrangement with set of regions RA. The separation

set S(R,R′) between two regions R,R′ ∈ RA is the set of hyperplanes of A which

separate the two regions:

S(R,R′) := {H ∈ A | H separates R from R′} .

Fix a regionB ∈ RA and call it the base region. For brevity, we let S(R) = S(B,R)

be the separation set between a region R and the base region B. The poset

of regions PR(A, B) is the partial order on regions RA given by inclusion of

separation sets S(R), i.e., for R,R′ ∈ RA:

R ≤PR R′ if and only if S(R) ⊆ S(R′).
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Example 3.4.1 Let W be a type A2 Coxeter group with Coxeter arrangement

as in Figure 3.2. We use Figure 3.2 to determine our separation sets. Taking R1

and R3, it can be observed that there are only two hyperplanes that are between

these two regions, namely H2 and H3. Therefore S(R1, R3) = {H2, H3}.

For an example of a poset of regions, we fix a base region, say B = R0, and

determine the separation set S(R) for each region R ∈ RA. Considering R1 ∈ RA,

the only hyperplane separating R1 from R0 = B is the hyperplane H1. Therefore

the separation set between the region R1 and the base region is the set {H1},

in other words S(R1) = S(B,R1) = {H1}. By a similar calculation, we have the

following separation sets for each region:

S(B) = ∅ S(R1) = {H1} S(R2) = {H1, H2}

S(R3) = {H1, H2, H3} = A S(R4) = {H2, H3} S(R5) = {H3}.

Ordering the separation sets by inclusion gives us the poset of regions. The Hasse

diagram of the poset of regions PR(A, B) where B = R0 is given in Figure 3.5.

The Hasse diagram for this poset is isomorphic to the Hasse diagram for the weak

order in Figure 1.5 and in Figure 1.6. This is because the poset of regions for

Coxeter arrangements is isomorphic to the weak order for Coxeter groups.

Proposition 3.4.2 (Edelman, 1984, Corollary 4.3) Given a finite Coxeter sys-

tem (W,S), the weak order on W , (W,≤R), is isomorphic to the poset of re-

gions PR(A, B) on the Coxeter arrangement AW for any choice of base region B.

Although for Coxeter groups the weak order is always a lattice in the finite case,

the poset of regions is not always a lattice. In fact, for some arrangements, the

choice of base region determines whether or not the poset of regions is a lattice.

Example 3.4.3 Let A be the third arrangement in Figure 3.1. If we let the base

region B be one of the “triangular” regions in RA, the poset of regions PR(A, B)
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H3H1

H2

B

R1

R2

R3

R4

R5

Figure 3.5: The lattice of regions associated to the type A2 Coxeter arrangement.

is a lattice. The Hasse diagram of PR(A, B) appears on the left in Figure 3.6.

If on the other hand we let our base region B′ be one of the “square” regions

in RA, then the poset of regions PR(A, B′) is not a lattice. The Hasse diagram

of PR(A, B′) appears on the right in Figure 3.6. This poset is not a lattice since

not every two elements have a join and a meet. As an example, the two circled

vertices in the Hasse diagram do not have a join.

Although the poset of regions is not always a lattice, there is a large family of

hyperplane arrangements whose poset of regions are lattices which we cover in the

next section.

3.5 Simplicial arrangements

In this section we survey simplicial hyperplane arrangements, a family of arrange-

ments whose poset of regions are lattices.

A wall of a region R ∈ RA, or a bounding hyperplane of R, is a hyperplane H ∈ A
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Figure 3.6: On the left is the Hasse diagram of the poset of regions of the third

arrangement in Figure 3.1 where the base region B is any of the triangular regions.

On the right is the Hasse diagram of the poset of regions of the same arrangement

but with the base region B′ as one of the square regions. The poset of regions on

the left is a lattice whereas the poset of regions on the right is not since the two

circled points do not have a join.

such that dim(H∩R) = n−1 = dim(V )−1. Let B(R) denote the set of bounding

hyperplanes of a region R. We say that a region R is simplicial if the set of normal

vectors corresponding to its bounding hyperplanes is linearly independent. For A

essential this is equivalent to saying that a region is simplicial if it has precisely n

walls, |B(R)| = n = dim(V ). If every region is simplicial then we say that the

arrangement is simplicial.

Theorem 3.5.1 (Björner et al., 1990, Theorems 3.1 and 3.4) Suppose A is

essential. If PR(A, B) is a lattice then the base region B is a simplicial region.

Moreover, if A is a simplicial arrangement then PR(A, B) is a lattice for an

arbitrary choice of base region B.

Example 3.5.2 Considering the arrangements in Figure 3.1, the first two hyper-

plane arrangements are simplicial, but the third one is not. To observe this for the

third hyperplane arrangement in Figure 3.1 it suffices to note that there is a region
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which has 4 walls directly in the middle of the figure. But since the arrangement

lives in 3-space and as four vectors cannot be linearly independent in 3-space, this

region is not simplicial implying the arrangement itself is not simplicial.

It turns out that Coxeter arrangements are all simplicial, see for instance (Bour-

baki, 1968, Theorem VI.1.2.iii).

Theorem 3.5.3 The Coxeter arrangement AW associated to a Coxeter group W

is a simplicial arrangement.

We extend the poset of regions to the faces of an arrangement in Chapter 4. For

this, we will view faces of an arrangement as covectors of an oriented matroid

which we cover in the following sections.

3.6 Covectors

In this section we survey covectors: sign vectors which encode the algebraic struc-

ture of a hyperplane arrangements.

Let E be a (finite) ordered set and {−, 0,+}E be a set of (sign) vectors. The

elements in {−, 0,+}E are called covectors and a subset L of {−, 0,+}E is called a

set of covectors. For F a covector and H ∈ E let F (H) denote the Hth component

of F .

Example 3.6.1 As an example, let E = {H1, H2} be an ordered set. Then

L = {(+,+), (−,−), (−,+), (+,−), (+, 0), (0,+), (−, 0), (0,−), (0, 0)} = {−, 0,+}E

is a set of (all) covectors. Let F be the covector (−, 0) ∈ L. Then F (H1) = −,

F (H2) = 0 since the first and second components of F are − and 0 respectively.
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It turns out, the faces of a hyperplane arrangement can be represented as covec-

tors. Let A be a (central) hyperplane arrangement and recall that eH is a fixed

normal vector for each H. Consider the sign map σ : V → {−, 0,+}A such that

for v ∈ V we have σ(v) = (σH(v))H∈A where

σH(v) =



+ if 〈v, eH〉 > 0,

− if 〈v, eH〉 < 0,

0 if 〈v, eH〉 = 0.

We extend the sign map to any face in FA by using points in the relative inte-

rior. If int(F ) is the set of points strictly in the interior of a face F , then the

face sign map is the map σ̂ : FA → {−, 0,+}A such that σ̂ (F ) = (σ̂H(F ))H∈A
where σ̂H(F ) = σH(x) for x ∈ int(F ). This map is well-defined since for arbi-

trary x, y ∈ int(F ) we have that σ(x) = σ(y). Note that this is not the case

if we were to have taken x ∈ int(F ) and y on the boundary as there could be

some H such that σH(y) = 0 6= σH(x). By abuse of notation we let σ̂H(F ) be

denoted by F (H) as with covectors. The image of FA by the face sign map σ̂ is

then the set of covectors associated to the arrangement A. We denote this set of

covectors L(A).

Example 3.6.2 The set of covectors L in Example 3.6.1 is a set of covectors as-

sociated to a hyperplane arrangement. In particular, the hyperplane arrangement

is given by A = {H1, H2} = E and is the arrangement as in Figure 3.7. Each

face of the arrangement A is labelled in Figure 3.7 by its associated covector

in L = L(A) = {−, 0,+}A. The arrangement A is the Coxeter arrangement of

type A1 × A1.

In the following section we survey four operations on covectors which are used

heavily in Chapter 4.
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H1

H2

(0,+)

(+, 0)

(0,−)

(−, 0) = F

(+,+)(+,−) = G

(−,−) (−,+)

e2

e1

−e2

−e1

(0, 0)

Figure 3.7: Faces of Coxeter arrangement of type A1×A1 labelled with covectors.

3.7 Covector Operations

In this section we survey four operations on covectors and their interpretations in

terms of hyperplane arrangements. Let E be an ordered set and let L ⊆ {−, 0,+}E

be a set of covectors.

3.7.1 Opposite

The opposite of F ∈ L is the covector −F such that for H ∈ E

−F (H) =



+ if F (H) = −,

− if F (H) = +,

0 if F (H) = 0.

In terms of a central hyperplane arrangement A, the opposite of a face F is the

face −F ∈ FA where −F = {−x | x ∈ F}. In other words, it is the face which is
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contained in every hyperplane that F is contained in and is separated from F by

every other hyperplane.

Example 3.7.1 LetA = {H1, H2} = E be the ordered set as in Example 3.6.1 as-

sociated to the Coxeter arrangement of typeA1×A1 as in Figure 3.7. Let F = (−, 0)

be the covector in L = {−, 0,+}E . The opposite of F is obtained by changing the

sign of each component; −F = (+, 0). From Figure 3.7 it can be observed that −F

is on the “opposite” side of the hyperplane arrangement. In other words, −F is

contained in all the same hyperplanes as F (namely H2) and separated from F

by every other hyperplane (namely H1) as can be seen in Figure 3.7.

3.7.2 Composition

The composition of two covectors F and G in L is the covector F ◦ G such that

for H ∈ E

(F ◦G)(H) =


F (H) if F (H) 6= 0,

G(H) otherwise.

In terms of a central arrangement A, we consider an arbitrary point p in the

interior of F . The composition of F and a face G is the face in FA we land into

when we move the point p slightly towards a point q in the relative interior of G.

Example 3.7.2 Continuing our example from Example 3.7.1 we have F = (−, 0)

and we consider another covector, say G = (+,−) ∈ L. The composition of F

and G is given by F ◦G = (−,−). Notice that composition is not commuta-

tive since G ◦ F = (+,−) 6= (−,−) = F ◦G. From Figure 3.7 it can be observed

that F ◦G is nothing more than the face we land into by starting from F and

moving slightly towards G as can be seen in the following figure. This is observed

in Figure 3.8 where p is a point in the interior of F and we move p slightly towards
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a point q in the relative interior of the face G into the face represented by the

covector (−,−).

H1

H2

(0,+)

(+, 0)

(0,−)

(−, 0) = F

(+,+)(+,−) = G

(−,−) = F ◦G (−,+)p

q

(0, 0)

Figure 3.8: An example of composition of the face F = (−, 0) with the

face G = (+,−).

Similarly, G ◦ F = G is the face we land into by starting from G and moving

slightly towards F .

3.7.3 Reorientation

The reorientation of a covector F by a covector G is the covector F−G such that

for H ∈ E

(F−G)(H) =


−F (H) if G(H) = 0,

F (H) otherwise.

In terms of an arrangement A, the reorientation of F by G is the covector of the
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face obtained by changing the sign of all hyperplanes which contain G. Note that

reorientation by a face G which is not contained in F might give a covector which

is not associated to a face in our arrangement.

Example 3.7.3 Continuing our example from Example 3.7.1, reorienting F = (−, 0)

by G = (+,−) doesn’t alter F , F−G = (−, 0) = F , since G has no zero com-

ponents. On the other hand, reorienting G by F does give us another covec-

tor since F (H2) = 0, i.e., G−F = (+,+). From Figure 3.7 it can be observed

that since G is not contained in any hyperplanes then F reflects over nothing,

thus F−G = F . On the other hand, since F ⊆ H2 then reorienting G by F re-

flects the face G over the hyperplane H2 giving us the face associated to the

covector (+,+). This can be observed in Figure 3.9.

H1

H2

(0,+)

(+, 0)

(0,−)

(−, 0) = F

(+,+) = G−F(+,−) = G

(−,−) (−,+)

(0, 0)

Figure 3.9: An example of reorientation of the face F = (−, 0) by the

face G = (+,−).
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3.7.4 Separation set

The separation set between the covectors F and G is given by the set

S(F,G) = {H ∈ E | F (H) = −G(H) 6= 0} .

In terms of hyperplane arrangements, the separation set is the generalization of

the separation set between regions to the set of faces. In other words, it is the set

of hyperplanes which separate F and G.

Example 3.7.4 Continuing our example from Example 3.7.1, the separation

set between F = (−, 0) and G = (+,−) is given by S(F,G) = {H1}. From

Figure 3.7 it can be observed that the only hyperplane separating F and G is the

hyperplane H1.

Covectors and the covector operations we defined in this section can be used to

define an oriented matroid (a generalization of central hyperplane arrangements).

Oriented matroids give us an algebraic way to look at hyperplane arrangements

and make calculations, such as separation set and composition, much easier. We

survey the notion of an oriented matroid in the following section.

3.8 Oriented matroids

In this section we survey oriented matroids, a generalization of central hyperplane

arrangements. Oriented matroids are useful as they provide an algebraic point of

view for studying hyperplane arrangements.

Using covectors, the properties of (essential) central hyperplane arrangements can

be generalized into oriented matroids defined as follows.

Definition 3.8.1 Let E be a finite ordered set and L a subset of {−, 0,+}E . An
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oriented matroid is a pair (E ,L) such that the set of covectors L ⊆ {−, 0,+}E

satisfy the following properties:

(1) 0 ∈ L where 0 is the all zero vector.

(2) If F ∈ L then −F ∈ L.

(3) If F and G are in L then (F ◦G) ∈ L.

(4) Elimination axiom: If F and G are in L and H ∈ S(F,G) then there exists

X ∈ L such that X(H) = 0 and X(H ′) = (F ◦ G)(H ′) = (G ◦ F )(H ′) for

all H ′ /∈ S(F,G).

In terms of (essential) central hyperplane arrangements, the four properties of an

oriented matroid translate to the following four properties of an essential central

hyperplane arrangement A.

(1) The origin {0} is always a face in FA since the intersection of every hyper-

plane is {0} (since A is essential and central).

(2) The opposite of every face F is also present in the arrangement. It is the

face −F obtained by reflecting F over every hyperplane (as A is central).

(3) Similarly, from any face F we can move a point in the interior of F to-

wards any other face G. The face this point moves to is also a face in our

arrangement.

(4) Finally, the elimination axiom says that if we have two faces F and G which

are separated by some hyperplane H, then there is some face X in FA which

is contained in H such that X is contained in the same (closed) half-space

of every hyperplane not in the separation set of F and G as F and G are.

Note that this property is not trivial.
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Therefore, every set of covectors L(A) associated to a central hyperplane arrange-

ment is the set of covectors for an oriented matroid, see for instance (Björner et al.,

1999, Theorem 5.1.4).

Theorem 3.8.2 Let A be an (essential central) hyperplane arrangement and

let L(A) be the set of covectors associated to A. Then (A,L(A)) is an oriented

matroid.

In other words, we can use the language of oriented matroids for studying hyper-

plane arrangements. The usefulness and efficiency of oriented matroids for hyper-

plane arrangements was so prominent that it took over the traditional methods

of working with hyperplane arrangements. As an example, in Chapter 4 we will

use the fact that, like in the case of Coxeter groups, every face of a hyperplane

arrangement can be viewed as an interval in the poset of regions. Using hyper-

plane arrangements, this follows from (Edelman, 1984, Lemma 1.2) where the

proof took half a page. On the other hand, using oriented matroids, this follows

from (Björner et al., 1999, Lemma 4.2.12) where the proof was a one line direct

consequence of the definition of an oriented matroid.

Oriented matroids also open the door to a larger class of objects since not every

oriented matroid is associated to a hyperplane arrangement.

Example 3.8.3 An example of an oriented matroid that is not a hyperplane ar-

rangement uses the covectors of a pseudoline arrangement. A pseudoline is some

simple closed curve in the projective plane P2 whose complement is connected. A

pseudoline arrangement is a finite set of pseudolines such that every pair of pseu-

dolines meet at exactly one point and the intersection of all pseudolines is empty.

A pseudoline arrangement is a hyperplane arrangement if every pseudoline can

be “stretched” to become a straight line. In Figure 3.10 we give an example of a

pseudoline arrangement that cannot be converted into a hyperplane arrangement.



117

p

Figure 3.10: The pseudoline arrangement of an oriented matroid that does not

come from a hyperplane arrangement.

This follows from the fact that we cannot straighten the horizontal curve in the

middle (the only non-straight curve) without it intersecting the point p due to

Pappus’ hexagon theorem (see for instance (Coxeter, 1989)). In fact this is the

smallest oriented matroid not associated to a hyperplane arrangement. In partic-

ular, every pseudoline arrangement with 8 or fewer pseudolines is associated to

some hyperplane arrangement. Additionally, pseudoline (or in higher dimensions,

pseudosphere) arrangements give a universal model for oriented matroids by the

topological representation theorem (see (Björner et al., 1999, Theorem 5.2.1)).

For more information on this oriented matroid, the reader is invited to consult

(Björner et al., 1999, Section 1.3).





CHAPTER IV

THE FACIAL WEAK ORDER ON HYPERPLANE ARRANGEMENTS

The text in this chapter is about to be submitted and was written by myself,

Christophe Hohlweg, Thomas McConville and Vincent Pilaud.

A hyperplane arrangement is a finite collection A of linear hyperplanes in a finite

dimensional real vector space V . Its regions are the closures of the connected

components of the complement in V of the union of all hyperplanes in A. A

region is simplicial if the normal vectors to its bounding hyperplanes are linearly

independent, and the arrangement is simplicial if all its regions are. The zonotope

of the arrangement A is a convex polytope dual to the arrangement A, obtained

as the Minkowski sum of line segments normal to the hyperplanes of A.

The regions of a hyperplane arrangement A can be ordered as follows. Define

the separation set S(R,R′) between two regions R and R′ of A as the set of

hyperplanes of A separating the two regions R and R′. For a fixed base region

B, the poset of regions is the set of regions of A ordered by inclusion of their

separation sets S(B,R) with the base region B. A. Björner, P. H. Edelman and

G. M. Ziegler (Björner et al., 1990) showed that the poset of regions is a lattice if

A is simplicial, and that the base region B is simplicial if the poset of regions is a

lattice. The Hasse diagram of the poset of regions can also be seen as the graph

of the zonotope of A, oriented from the base region B to its opposite region −B.
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In this paper, we extend the study of the facial weak order FW(A, B), as in-

troduced in (Dermenjian et al., 2018) for Coxeter arrangements. This order is a

poset structure on the faces of the hyperplane arrangement A or, equivalently, of

the zonotope of A. It was first introduced by D. Krob, M. Latapy, J.-C. Nov-

elli, H.-D. Phan, and S. Schwer in (Krob et al., 2001) for the braid arrangement

(the Coxeter arrangement of type A) where it was shown to be a lattice. It was

then extended to arbitrary Coxeter arrangements by P. Palacios and M. Ronco

in (Palacios & Ronco, 2006) and it was shown to be a lattice for arbitrary Coxeter

arrangements in (Dermenjian et al., 2018). The aims of this article are to extend

the facial weak order to central hyperplane arrangements.

The first part of this article, contained in § 4.1 and § 4.2, is dedicated to providing

four equivalent definitions for the facial weak order on a given central hyperplane

arrangement:

• in terms of separation set comparisons between the minimal and maximal

regions incident to a face (§ 4.1.4),

• by providing a precise description of its covering relations (§ 4.1.5),

• in terms of covectors of the associated oriented matroid (§ 4.2.1),

• and in terms of root inversion sets of the normals to the hyperplane arrange-

ments (§ 4.2.4).

We prove these four definitions to be equivalent in Theorem 4.2.9 and Theo-

rem 4.2.18. In the case of a Coxeter arrangement, this recovers and expands the

descriptions in (Dermenjian et al., 2018).

In § 4.3, we show that if the poset of regions of a hyperplane arrangement is a

lattice, then the facial weak order is a lattice (Theorem 4.3.1). This is achieved
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using the BEZ lemma (Björner et al., 1990, Lemma 2.1) which states that a poset

is a lattice as soon as there exists a join x∨ y for every two elements x and y that

both cover the same element. This extends the results of (Krob et al., 2001) for

the braid arrangement and of (Dermenjian et al., 2018) for Coxeter arrangements.

For a general arrangement A, the facial weak order may not be a lattice, but

its topology still admits a nice description that we study in § 4.4. There are

a wide variety of simplicial complexes associated to a hyperplane arrangement.

Typically, complexes that depend on the matroid structure of A are homotopy

equivalent to a wedge of (several) spheres, e.g. the independence complex, the

reduced broken circuit complex, or the lattice of flats (Björner, 1992). On the

other hand, complexes that depend on the oriented matroid structure of A tend to

be homotopy equivalent to a single sphere or are contractible, e.g. the complexes of

acyclic, convex, or free sets (Edelman et al., 2002), the poset of regions (Edelman,

1984), or the poset of cellular strings (Björner, 1992). We compute the homotopy

types of intervals of the facial weak order (Theorem 4.4.6). Keeping with the

aforementioned trends, we prove that every interval of the facial weak order is

either contractible or homotopy equivalent to a sphere.

To conclude, let us mention two directions that are not explicitly explored here to

keep the paper short. First, although we use the language of oriented matroids,

we only deal here with facial weak order of hyperplane arrangements. The results

presented here seem however to extend in the context of simple simplicial oriented

matroids. Second, using the same tools as in (Dermenjian et al., 2018), one can

observe that when the arrangement is simplicial, each lattice congruence of the

poset of regions naturally translates to a lattice congruence of the facial weak

order.
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4.1 Facial weak order on the poset of regions

In this section we start by recalling classical definitions on hyperplane arrange-

ments. For more details, we refer the reader to the book by P. Orlik and H. Terao (Or-

lik & Terao, 1992), the book by R. Stanley (Stanley, 2011) and the paper by

A. Björner, P. H. Edelman and G. M. Ziegler (Björner et al., 1990). We then

introduce the facial weak order and discuss its cover relations.

4.1.1 Hyperplane arrangements

Let (V, 〈·, ·〉) be an n-dimensional real Euclidean vector space. A central hyper-

plane arrangement, or arrangement for short, is a finite setA of linear hyperplanes

in V . For each H ∈ A, we choose some fixed nonzero vector eH normal to H, that

is, such that H = {v ∈ V | 〈eH , v〉 = 0} (the choice of the normal vectors eH are

unique up to nonzero scalar multiplication). We also consider the two half spaces

H+ := {v ∈ V | 〈eH , v〉 > 0} and H− := {v ∈ V | 〈eH , v〉 < 0} bounded by H.

The rank of A is the dimension rank(A) of the linear subspace V ′ spanned by the

vectors eH , for H ∈ A. An arrangement A is essential if rank(A) = dim(V ), or

equivalently if the intersection of all hyperplanes of A is the origin. We assume

our arrangements to be essential unless stated otherwise. From a combinatorial

perspective the specialization to essential arrangements causes no loss of general-

ity. This is due to the fact that for each arrangement A of rank m in V ∼= Rn

there is an associated essential arrangement A′ in V ′ ∼= Rm whose face structure

is similar. See (Björner et al., 1999, Section 2.1) for more details.

The regions of an arrangement A are the closures of the connected components of

V r(⋃H∈AH). We denote by RA the set of regions of A. A wall of a region R in A

is a bounding hyperplane H ∈ A of R, that is, dim(H∩R) = dim(V )−1. A region
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R is said to be simplicial if the normal vectors of its walls are linearly independent.

If A is essential then a region is simplicial if and only if it has precisely rank(A)

walls. An arrangement is simplicial if all its regions are simplicial.

A face of A is the intersection of some regions of A. We denote by FA the set of

faces of A. Note that the regions are the codimension 0 faces of A. The face poset

of the arrangement A is the poset (FA,⊆) of faces of A ordered by inclusion. The

face lattice of the arrangement A is the face poset together with the vector space

itself as the maximum element. In this paper, we will consider a different poset

structure on FA.

Example 4.1.1 Well-known examples of simplicial hyperplane arrangements are

the Coxeter arrangements. These are the hyperplane arrangements associated to

a Coxeter system (W,S). See Figure 4.1 for an illustration of the Coxeter arrange-

ments of types A3, B3 and H3. We refer the reader to the books (Humphreys,

1990; Björner & Brenti, 2005) for comprehensive surveys on Coxeter groups. Fig-

ure 4.2 gives an example of the type A2 Coxeter arrangement together with its

faces. The Ri (in blue) are the six regions of the arrangement and are the codi-

mension 0 faces. There are also six codimension 1 faces denoted by the Fi (in red)

and one codimension 2 face {0} at the centre (in green).

4.1.2 Poset of regions

Consider an arrangement A. The separation set of two regions R,R′ ∈ RA is

S(R,R′) := {H ∈ A | H separates R from R′} .

We now choose B to be a distinguished region of A called the base region, and

abbreviate S(B,R) into S(R). The poset of regions with respect to B is the partial

order PR(A, B) = (RA,≤PR) on the regions RA of the arrangement A defined by

R ≤PR R′ ⇐⇒ S(R) ⊆ S(R′).
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Figure 4.1: The type A3, B3 and H3 Coxeter arrangements.

The poset of regions is graded by the cardinality of the separation set |S(R)| of a

regionR. The base regionB is its minimum element and has rank |S(B)| = |∅| = 0,

and its opposite region −B is its maximum element and has rank |S(−B)| = |A|.

Additionally, we have the following statement, see e.g. (Edelman, 1984, Proposi-

tion 2.1).

Proposition 4.1.2 The map R 7→ −R := {−v | v ∈ R} is a self-duality of the

poset of regions PR(A, B).

The reader is referred to § 4.3.3 for a definition of self-dual. It is known that

posets of regions associated to simplicial arrangements are lattices.

Theorem 4.1.3 ((Björner et al., 1990, Theorems 3.1 and 3.4)) Suppose A is

essential. If the poset of regions PR(A, B) is a lattice then the base region B is

a simplicial region. Moreover, if A is a simplicial arrangement then the poset of

regions PR(A, B) is a lattice for an arbitrary choice of base region B.

Example 4.1.4 Following with Example 4.1.1, the Hasse diagram of the poset

of regions of a type A2 Coxeter arrangement is given in Figure 4.3. For Coxeter
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arrangements, the poset of regions is nothing more than the (right) weak order

where the separation sets can be seen as inversion sets (Humphreys, 1990; Björner

& Brenti, 2005). In this example, we see that R1 ≤PR R2 since

S(R1) = {H1} ⊆ {H1, H2} = S(R2),

but R5 6≤PR R2 since S(R5) = {H3} 6⊆ {H1, H2} = S(R2). The minimal element

is B, the maximal element is −B = R3.

4.1.3 Facial intervals

One of the interesting facts about the poset of regions is that it allows each face

in FA to be described by a unique interval in PR(A, B). These intervals will be

used to define the facial weak order.

−e1

−e2
−e3

e1
e2

e3

H3H1

H2

F0

F1

F2F3

F4

F5
B

R1

R2

R3

R4

R5

Figure 4.2: The type A2 Coxeter arrangement where B is the intersection of the

positive half-spaces of all hyperplanes. See Example 4.1.1.
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Proposition 4.1.5 For any face F ∈ FA, the set {R ∈ RA | F ⊆ R} is an

interval of the poset of regions PR(A, B). We denote it [mF ,MF ] and call it the

facial interval of F . Moreover, F = ⋂
R∈[mF ,MF ] R.

Remark 4.1.6 A proof of the above Proposition 4.1.5 can be found in (Björner

et al., 1999, Lemma 4.2.12). It is based on the following geometric idea: the

region mF (resp. MF ) is the region that is found when starting from any point in

the relative interior of the face F and slightly moving in the direction of (resp. away

from) a point in the relative interior of the base region B.

For instance the interval corresponding to a region is the singleton constituted

of that region. Note that not all intervals of the poset of region PR(A, B) are

facial intervals; only those of the form {R ∈ RA | F ⊆ R} for some face F ∈ FA.

Since F = ⋂
R∈[mF ,MF ] R, we obtain the following corollary.

Corollary 4.1.7 For F,G ∈ FA, we have F ⊆ G ⇐⇒ [mF ,MF ] ⊇ [mG,MG].

H3H1

H2

B

R1

R2

R3

R4

R5

Figure 4.3: The lattice of regions associated to the type A2 Coxeter arrangement.

See Example 4.1.4.
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Example 4.1.8 As we saw in Example 4.1.1, there are 13 faces in the arrange-

ment of Figure 4.3. For instance, the origin {0} is represented by [B,R3] and F1

is represented with [R1, R2]. Each region R is given by the interval [R,R].

4.1.4 Facial weak order

We now state the definition of the facial weak order1 which will be the focus for

the rest of the paper.

Definition 4.1.9 The facial weak order is the order ≤FW on FA defined by

F ≤FW G ⇐⇒ mF ≤PR mG and MF ≤PR MG

where [mF ,MF ] and [mG,MG] are the facial intervals in PR(A, B) associated to

the faces F and G respectively. We denote by FW(A, B) the poset (FA,≤FW).

Example 4.1.10 We give an example of the Hasse diagram of the facial weak

order for the type A2 Coxeter arrangement in Figure 4.4. As we saw in Exam-

ple 4.1.1, there are 13 faces in the arrangement of Figure 4.3, corresponding to the

13 elements of the facial weak order. For example we have [B,R5] ≤FW [R2, R3]

since B ≤PR R2 and R5 ≤PR R3.

The facial weak order was first defined for the braid arrangement by D. Krob,

M. Latapy, J.-C. Novelli, H.-D. Phan and S. Schwer in (Krob et al., 2001).

It was then extended to arbitrary finite Coxeter arrangements by P. Palacios

and M. Ronco in (Palacios & Ronco, 2006). This order was studied in de-

1Just like the poset of regions, it is tempting to call this order the poset of faces. However,

the facial weak order IS NOT the classical face poset (the poset of faces ordered by inclusion).

We have thus chosen to borrow the name facial weak order from the context of Coxeter groups

studied in (Dermenjian et al., 2018) to the present context of hyperplane arrangements.
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[R2,R2]

[R3,R3]

[R4,R4]

[R5,R5]

[B,B]

[R1,R1]
[B,R5] [B,R1]

[R1,R2]

[R2,R3][R4,R3]

[R5,R4] [B,R3]

Figure 4.4: The facial weak order labelled by facial intervals for the type A2

Coxeter arrangement. See Example 4.1.10.

tail in (Dermenjian et al., 2018). Definition 4.1.9 was written there in Cox-

eter language. Namely, for a Coxeter system (W,S), the poset of regions is

the right weak order ≤R on elements of W . The faces of the Coxeter arrange-

ment correspond to the standard parabolic cosets xWI where I ⊆ S, WI = 〈I〉,

and x ∈ W I = {w ∈ W | `(w) ≤ `(ws) ∀s ∈ I}. In this case, the facial intervals

are given by [x, xw◦,I ] where w◦,I is the longest element in the parabolic sub-

group WI . The order ≤FW was given by xWI ≤FW yWJ if and only if x ≤R y

and xw◦,I ≤R yw◦,J .

Remark 4.1.11 The facial weak order FW(A, B) is clearly a poset (reflexive,

antisymmetric and transitive) as the poset of regions is. In fact, the facial weak

order FW(A, B) is the subposet induced by facial intervals in the poset of all

intervals of the poset of regions PR(A, B) where [a, b] < [c, d] if and only if

a ≤PR c and b ≤PR d.

Remark 4.1.12 Note that the poset of regions PR(A, B) is clearly the subposet

of the facial weak order FW(A, B) induced by the singletons [R,R] for R ∈ RA.
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We will see in Proposition 4.3.18 that this observation also holds at the level of

lattices when A is simplicial.

4.1.5 Cover relations for the facial weak order

For two faces F andG such that F ≤FW G, we havemF ≤PR mG andMF ≤PR MG

by Definition 4.1.9. The next proposition shows two types of cover relations for

the facial weak order. These will be shown to be precisely all cover relations in

FW(A, B) in Theorem 4.2.9.

Proposition 4.1.13 For any two faces F,G ∈ FA such that F ≤FW G, we have

(1) F ⊆ G ⇐⇒ MF = MG and G ⊆ F ⇐⇒ mF = mG,

(2) if |dimF − dimG| = 1 and F ⊆ G or G ⊆ F , then F is covered by G.

Proof. (1) Suppose first that F ⊆ G. By Corollary 4.1.7, this implies the inclu-

sion [mF ,MF ] ⊇ [mG,MG] and therefore MG ≤PR MF . Furthermore, by Defini-

tion 4.1.9 since F ≤FW G then MF ≤PR MG forcing MF = MG as desired.

Conversely, suppose MF = MG. As F ≤FW G we have mF ≤PR mG and therefore

[mF ,MF ] ⊇ [mG,MF ] = [mG,MG]. In other words F ⊆ G by Corollary 4.1.7.

The equivalence G ⊆ F ⇐⇒ mF = mG is similar.

(2) Assume that F ⊆ G, the argument for the other case being symmetric.

SoMF = MG by (1). Let X ∈ FAr{F,G} be a face such that F <FW X <FW G.

By definition of the facial weak order we haveMX = MF = MG. Then F ⊆ X ⊆ G

by (1). Since |dimF − dimG| = 1, we necessarily have X = F or X = G. Hence

F is covered by G.

Corollary 4.1.14 For any two faces F,G ∈ FA, if either F ⊆ G and MF = MG
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or G ⊆ F and mF = mG, then F ≤FW G. If additionally, |dimF − dimG| = 1

then F is covered by G, which we denote F lFW G.

Proof. Suppose first F ⊆ G and MF = MG. For F ≤FW G to hold, it suffices to

show mF ≤PR mG. Since F ⊆ G, then by Corollary 4.1.7 [mF ,MF ] ⊇ [mG,MG]

and therefore mF ≤PR mG as desired.

If G ⊆ F and mF = mG, then it suffices to show MF ≤PR MG. Similarly,

since G ⊆ F , then [mG,MG] ⊇ [mF ,MF ] and therefore MF ≤PR MG as desired.

Additionally, if |dimF−dimG| = 1, then by Proposition 4.1.13(2) we have F lFW G.

4.2 Geometric interpretations for the facial weak order

We describe in this section two different geometric interpretations for the facial

weak order: first by the covectors of the corresponding oriented matroid, then

by what we call root inversion sets which relates to the geometry of the corre-

sponding zonotope. We prove along the way that these various interpretations

are equivalent.

Throughout this section, A is a hyperplane arrangement. We fix a normal vec-

tor eH to each hyperplane H ∈ A, so that H = {v ∈ V | 〈eH , v〉 = 0}. We con-

sider the half spacesH+ = {v ∈ V | 〈eH , v〉 ≥ 0} andH− = {v ∈ V | 〈eH , v〉 ≤ 0}

where the boundary in both cases is H. For convenience, we choose the direction

of the vector eH such that the base region B lies in H+.
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4.2.1 Covectors and oriented matroids

In this section, we introduce basic oriented matroid terminology to deal geomet-

rically with our hyperplane arrangements. As we only consider hyperplane ar-

rangements, we focus on realizable oriented matroids. Moreover, we only consider

covectors, and do not discuss other perspectives on oriented matroids. A more

general setting and background on oriented matroids can be found in the book by

A. Björner, M. Vergas, B. Sturmfels, N. White and G. M. Ziegler (Björner et al.,

1999).

The sign map of the hyperplane arrangement A is the map

σ : V → {−, 0,+}A

defined for v ∈ V by σ(v) =
(
σH(v)

)
H∈A

where

σH(v) = sign(〈v, eH〉) =



+ if 〈v, eH〉 > 0,

− if 〈v, eH〉 < 0,

0 if 〈v, eH〉 = 0.

This map may be extended to assign to each face of A a vector in {−, 0,+}A as

follows. Denote by int(F ) the set of points in the relative interior of the face F .

The face sign map of the hyperplane arrangement A is the map

σ̂ : FA → {−, 0,+}A

defined by σ̂(F ) = σ(v) for v ∈ int(F ). This map is well-defined since, for

arbitrary v and w in int(F ), we have that σ(v) = σ(w). However, note that for

v on the boundary of F we could have that σH(v) = 0 even if σ̂H(F ) 6= 0 for

H ∈ A. Thus for v ∈ F r int(F ) either σH(v) = σ̂H(F ) or σH(v) = 0 for each

H ∈ A. Note that a face F is easily recovered from its covector:

F =
⋂
H∈A

H σ̂H(F ).
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By abuse of notation we let σ̂H(F ) be denoted by F (H). The sign vector σ̂(F ) is

called covector of the face F , and the image L(A) := σ̂(FA) of all faces in FA by

the face sign map σ̂ is the set of covectors of the hyperplane arrangement A.

Example 4.2.1 We have represented in Figure 4.5 the covectors of all faces of

the type A2 Coxeter arrangement in Figure 4.2.

H3H1

H2

(+,+, 0) (0,+,+)

(−, 0,+)

(−,−, 0)(0,−,−)

(+, 0,−)

(+,+,+)

(−,+,+)

(−,−,+)

(−,−,−)

(+,−,−)

(+,+,−)

(0, 0, 0)

Figure 4.5: The type A2 Coxeter arrangement where the faces are identified by

their associated covectors. See Example 4.2.1.

We next define some useful operations on sign vectors which we use throughout

this paper. For two sign vectors F,G ∈ {−, 0,+}A, define

• the opposite of F : −F (H) =



+ if F (H) = −,

− if F (H) = +,

0 if F (H) = 0.

• the composition of F and G: (F ◦G)(H) =


F (H) if F (H) 6= 0,

G(H) otherwise.
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• the reorientation of a F by G: (F−G)(H) =


−F (H) if G(H) = 0,

F (H) otherwise.

• the separation set: S(F,G) = {H ∈ A | F (H) = −G(H) 6= 0} .

Example 4.2.2 For instance, on the arrangement of Figure 4.5, for F = (−, 0,+)

and G = (0,−,−), we have

−F = (+, 0,−), F ◦G = (−,−,+), F−G = (+, 0,+) and S(F,G) = {H3}.

Note that if F and G are covectors in L(A), then the opposite −F of F and the

composition F ◦G of F and G are both covectors in L(A), or in other words faces

in FA. If furthermore, G ⊆ F then the reorientation F−G of F by G is a covector

in L(A) as well. Moreover, G ⊆ F−G as faces. Note that the separation set of

regions from § 4.1.2 is the same separation set as given for covectors regions. It

is well-known that the set of covectors L(A) of the arrangement A is an oriented

matroid in the sense of the following definition. Cryptomorphic definitions for ori-

ented matroids can be found in the book by A. Björner, M. Vergnas, B. Sturmfels,

N. White and G. M. Ziegler (Björner et al., 1999).

Definition 4.2.3 An oriented matroid is a pair
(
A,L

)
where L is a collection

of sign vectors in {−, 0,+}A satisfying the following four properties:

(1) 0 ∈ L.

(2) If F ∈ L then (−F ) ∈ L.

(3) If F,G ∈ L then (F ◦G) ∈ L.

(4) Elimination axiom: If F,G ∈ L and H ∈ S(F,G) then there exists X ∈ L

such that X(H) = 0 and X(H ′) = (F ◦ G)(H ′) = (G ◦ F )(H ′) for all

H ′ /∈ S(F,G).
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The notion of oriented matroids allows us to have a nice algebraic interpretation

of what it means for a face F to be a face of G. We can either do a comparison

between the two faces relative to the hyperplanes or we check how their covectors

interact through composition.

Proposition 4.2.4 The following assertions are equivalent for two faces F,G ∈ FA:

(1) F ⊆ G as faces,

(2) for all H ∈ A either F (H) = 0 or F (H) = G(H), and

(3) G = F ◦G as covectors.

Proof. The equivalence of (3) and (2) is readily seen by definition of the compo-

sition F ◦ G. Furthermore, if F ⊆ G as faces then it is readily seen that for all

H ∈ A either F (H) = 0 or F (H) = G(H).

It remains to show that (2) implies (1). Suppose contrarily that F 6⊆ G. If F ) G

then there exists some H ∈ A such that G(H) = 0 6= F (H) since F 6= G. Else

if F 6⊇ G and F 6⊆ G there is an H ′ ∈ A which separates G and F . In other

words 0 6= G(H ′) = −F (H ′).

In fact, the sign of a face relative to a hyperplane tells us a lot about the regions

containing the face. Recall that for a region R, the separation set between the

base region B and R is denoted by S(R).

Lemma 4.2.5 For a face F ∈ FA with facial interval [mF ,MF ] and a hyper-

plane H ∈ A,

(1) F (H) = − if and only if H ∈ S(mF ),

(2) F (H) = 0 if and only if H ∈ S(MF ) and H /∈ S(mF ),
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(3) F (H) = + if and only if H /∈ S(MF ).

In other words,

S(mF ) = {H ∈ A | F (H) < 0} and S(MF ) = {H ∈ A | F (H) ≤ 0} .

Proof. We show the first case, the other two being similar. First, recall that

by the definition of interval, H ∈ S(mF ) if and only if for all R ∈ [mF ,MF ]

then H ∈ S(R). In other words, if and only if H separates the base region B from

F . This is true if and only if for some v ∈ int(F ) then 〈v, eH〉 < 0 since B ⊆ H+

by our chosen orientation given at the beginning of this section. In other words,

if and only if F (H) = −.

This lemma allows us to be a little more precise as to which faces are faces of B

and gives us a stronger method of finding these faces. Not only are the faces of B

the faces with all non-negative components in their covector, but, in fact, we can

strengthen this by only needing to look at the hyperplanes which bound B.

Corollary 4.2.6 The following assertions are equivalent for a face F ∈ FA:

(1) F ⊆ B,

(2) F (H) ≥ 0 for all H bounding B, and

(3) F (H) ≥ 0 for all H ∈ A.

Proof. The points (1) and (3) are equivalent by Proposition 4.2.4 and the fact

that B(H) > 0 for all H ∈ A. Additionally, (3) implies (2) is readily seen.

To show that (2) implies (3), let B be the set of boundary hyperplanes of B.

Suppose that there exists H ∈ A rB such that F (H) = −. Then H ∈ S(mF )

by Lemma 4.2.5, therefore mF 6= B. This implies H ′ ∈ S(mF ) for some H ′ ∈ B
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as well, since some H ′ ∈ B must separate B and mF by definition of B. In other

words, F (H ′) = − for some H ′ ∈ B.

We conclude with an observation which ensures that a face is not contained in a

given hyperplane.

Lemma 4.2.7 Let F and G be two distinct faces in FA. If there exists H ∈ A

such that G = F ∩H, then F (H) 6= 0.

Proof. Suppose contrarily that F (H) = 0. Then F = F ∩ H = G contradicting

that F and G are distinct.

4.2.2 Covectors and the facial weak order

It is well-known that the face poset of the arrangement A can be interpreted as

the poset of covectors of L(A) ordered coordinatewise by 0 < − and 0 < +.

Adding a maximum element to both posets allows us to interpret the face lattice

as a lattice of covectors. Here, we consider instead a twisted order that relates to

the facial weak order.

Definition 4.2.8 Given two covectors F,G ∈ L(A), let the order ≤L be defined

by

F ≤L G ⇐⇒ G(H) ≤ F (H) for all H ∈ A,

where the order on signs is the natural order − < 0 < +.

We are ready to state our first main theorem, stating the equivalence between

three descriptions of the facial weak order using Definition 4.1.9, Corollary 4.1.14

and Definition 4.2.8 respectively.
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Theorem 4.2.9 The following assertions are equivalent for two faces F,G ∈ FA:

(1) F ≤FW G in the facial weak order FW(A, B),

(2) there exists a sequence of faces F = F1, F2, . . . , Fn = G such that for each i,

|dimFi− dimFi+1| = 1 and either Fi ⊆ Fi+1 and MFi
= MFi+1 or Fi+1 ⊆ Fi

and mFi
= mFi+1.

(3) F ≤L G in terms of covectors.

Due to this theorem, the two classes of cover relations from Corollary 4.1.14

describe all the cover relations for the facial weak order.

Corollary 4.2.10 For two faces F,G ∈ FA, we have F lFWG in the facial weak

order if and only if |dimF − dimG| = 1 and either F ⊆ G and MF = MG or

G ⊆ F and mF = mG if and only if F ≤FW G, |dimF − dimG| = 1 and either

F ⊆ G or G ⊆ F .

Before proving Theorem 4.2.9, we need the following two lemmas.

Lemma 4.2.11 For F,G ∈ L(A), if F ≤L G then F ≤L F ◦G ≤L G ◦ F ≤L G.

Proof. Suppose F ≤L G, i.e., for all H ∈ A, we have G(H) ≤ F (H). Then

• if G(H) = + then G(H) = (G ◦ F )(H) = (F ◦G)(H) = F (H) = +,

• if G(H) = 0 then G(H) ≤ (G ◦ F )(H) = (F ◦G)(H) = F (H),

• if G(H) = − then G(H) = (G◦F )(H) = − ≤ (F ◦G)(H) ≤ F (H). The first

inequality is an equality when F (H) = 0 else the second inequality becomes

an equality.
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Therefore in all three cases we have G(H) ≤ (G ◦ F )(H) ≤ (F ◦ G)(H) ≤ F (H)

for arbitrary H giving us the desired result.

Lemma 4.2.12 If F <L G and S(F,G) 6= ∅, then there exists F <L X <L G.

Proof. Since S(F,G) is non-empty, by the elimination axiom in Definition 4.2.3

for each H ∈ S(F,G) there exists a X ∈ L(A) such that X(H) = 0 and for

all H ′ /∈ S(F,G) then X(H ′) = (F ◦ G)(H ′) = (G ◦ F )(H ′). Thus let H be an

arbitrary hyperplane in S(F,G) and let X be the associated covector in L(A).

SinceH ∈ S(F,G) andG(H) ≤ F (H) we are forced to haveG(H) = − and F (H) = +.

Furthermore, sinceX(H) = 0 we see that our three faces are distinct, F 6= X 6= G.

It therefore suffices to show that G(H ′) ≤ X(H ′) ≤ F (H ′) for all H ′ ∈ Ar {H}.

Suppose first that H ′ ∈ S(F,G). Since G(H ′) ≤ F (H ′) and F (H ′) = −G(H ′) 6= 0

then G(H ′) = − and F (H ′) = +. Thus G(H ′) ≤ X(H ′) ≤ F (H ′) as desired.

Suppose next that H ′ /∈ S(F,G). Since G(H ′) ≤ F (H ′) and −G(H ′) 6= F (H ′) or

G(H ′) = F (H ′) = 0, there are three cases to consider:

• if F (H ′) = G(H ′) then F (H ′) = G(H ′) = (F ◦G)(H ′) = X(H ′),

• if F (H ′) = 0 and G(H ′) = − then X(H ′) = (F ◦G)(H ′) = G(H ′) < F (H),

• if F (H ′) = + and G(H ′) = 0 then X(H ′) = (F ◦G)(H ′) = F (H ′) > G(H).

Therefore G(H ′) ≤ X(H ′) ≤ F (H ′) and thus F <L X <L G.

We now prove Theorem 4.2.9.

Proof of Theorem 4.2.9. We show that the points (1), (2), and (3) are equivalent

by showing the implications (2) ⇒ (1) ⇒ (3) ⇒ (2).
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(2) ⇒ (1) By Corollary 4.1.14 the sequence F1, . . . , Fn gives a a chain of cov-

ers F = F1 lFW F2 lFW · · ·lFW Fn = G and therefore F ≤FW G as desired.

(1) ⇒ (3) Suppose F ≤FW G in the facial weak order, i.e., mF ≤PR mG

andMF ≤PR MG. To show F ≤L G it suffices to show G(H) ≤ F (H) for arbitrary

hyperplane H ∈ A. If G(H) = −, then G(H) ≤ F (H) always. If G(H) = + then

by Lemma 4.2.5, H /∈ S(MG). But since MF ≤PR MG then S(MF ) ⊆ S(MG), in

other words, H /∈ S(MF ). Applying Lemma 4.2.5 again gives F (H) = +. Finally,

if G(H) = 0 then by Lemma 4.2.5, H ∈ S(MG)r S(mG). Therefore H /∈ S(mG)

and since mF ≤PR mG we get H /∈ S(mF ). Thus by Lemma 4.2.5, F (H) 6= −

and G(H) = 0 ≤ F (H) as desired.

(3) ⇒ (2) We do this by induction on the path length from F to G. Our base

case of F = G trivially holds. Suppose now that F <L G. By Lemma 4.2.11, we

have F ≤L F ◦G ≤L G. There are three cases two consider:

• Suppose first that our inequalities are strict, i.e., F <L F ◦G <L G. Then

by induction F <L F ◦G and F ◦G <L G gives a chain of covers lFW such

that F = F1 lFW · · ·lFW Fi lFW F ◦GlFW G1 lFW · · ·lFW Gj = G.

• If G = F ◦G, then by Proposition 4.2.4, F ⊆ G. In particular, there exists a

chain of faces, F = F0 ⊆ F1 ⊆ · · · ⊆ Fn = G such that |dimFi − dimFi−1| = 1

for all i by the face lattice being graded. It remains to show MFi
= MFi+1 .

Since Fi ⊆ Fi+1 then for each H ∈ A, either Fi(H) = 0 or Fi(H) = Fi+1(H).

If Fi(H) = Fi+1(H) thenH ∈ S(MF ) if and only ifH ∈ S(MFi+1). If Fi(H) = 0

then Fi+1(H) = − (else F (H) = 0 and G(H) = + by inclusion, contradict-

ing the fact that F <L G). By Lemma 4.2.5 Fi(H) = 0 implies H ∈ S(MFi
)

and Fi+1(H) = − implies H ∈ S(MFi+1). Therefore S(MFi
) = S(MFi+1) im-

plying MFi
= MFi+1 as desired.
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• If F = F ◦G we have two further cases to consider. First, if

S(F,G) = {H ∈ A | F (H) = −G(H) 6= 0} = ∅

then G ◦ F = F ◦G = F . In particular, by Proposition 4.2.4, as F = G ◦ F

then G ⊆ F and using the sequence of faces G = Fn, Fn−1, . . . , F1 = F , then

as in the previous case we have |dimFi−dimFi+1|, Fi ⊇ Fi+1 andmFi
= mFi+1

as desired. Finally, suppose S(F,G) 6= ∅. By Lemma 4.2.12 there exists a

X such that F <L X <L G. Thus, by inducting on this gives us the desired

result.

Moreover, using the covector definition, we show that the structure of an interval

in FW(A, B) is not altered by a change of base region as long as the new region

is below the bottom element of our interval.

Proposition 4.2.13 Let X, Y be covectors in L(A) such that X ≤FW Y in

FW(A, B). If B′ is a region such that B′ ≤FW X in FW(A, B), then the inter-

vals [X, Y ] in FW(A, B) and in FW(A, B′) are isomorphic.

Proof. Changing the base region from B to B′ switches the orientation on any hy-

perplane in the separation set S(B,B′) and leaves the other hyperplanes with the

same orientation. Since B′ ≤FW X, we have X(H) = − whenever H ∈ S(B,B′)

where B is the base region. Hence, Z(H) = − as well whenever X ≤FW Z. After

the reorientation, X(H) = + = Z(H) for H ∈ S(B,B′). As the orientations

of the hyperplanes not in S(B,B′) are unchanged, we conclude that the interval

[X, Y ] is the same in FW(A, B′) as in FW(A, B).

We finally derive a criterion to compare two faces of the base region B in the

facial weak order.
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Corollary 4.2.14 For any faces F,G of the base region B, we have F ⊇ G if

and only if F ≤FW G. Similarly, for any faces F,G of the region −B opposite to

the base region B, we have F ⊆ G if and only if F ≤FW G.

Proof. Consider a hyperplane H ∈ A. Since F is a face of the base region B, we

have F (H) ≥ 0 by Corollary 4.2.6. Since F ⊇ G, we haveG(H) = 0 orG(H) = F (H)

by Proposition 4.2.4. Therefore, F (H) ≥ G(H) in both cases. We conclude

that F ≤FW G. The converse can be deduced from Proposition 4.2.4. The proof

for the second assertion is identical.

4.2.3 Root inversion sets

We now provide an alternative combinatorial encoding of the covectors in terms

of certain sets of normal vectors that will be related to the geometry of the corre-

sponding zonotope in the next section. Recall that, by convention in this paper,

eH is the fixed normal vector to the hyperplane H ∈ A such that the base region

B lies in H+. We need the following three sets:

Φ+
A := {eH | H ∈ A} , Φ−A := {−eH | H ∈ A} , and ΦA := Φ+

A ∪ Φ−A.

We call the elements in ΦA the roots2 of the arrangement A and the elements

in Φ+
A and Φ−A the positive and negative roots respectively. For X ⊆ ΦA, we

denote by X+ :=X∩Φ+
A the positive part and by X− :=X∩Φ−A the negative part.

An example of this construction is given in Figure 4.2 where the roots give the

root system for the type A2 Coxeter arrangement.

Definition 4.2.15 The root inversion set of a face F ∈ FA is

R(F ) = {e ∈ ΦA | 〈x, e〉 ≤ 0, for some x ∈ int(F )} .

2This terminology is once again inherited from Coxeter systems, but it should be noted that

these roots do not necessarily form root systems.
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τ(R2)

τ(R3)

τ(R4)

τ(R5)

τ(B)

τ(R1)
τ(F5) τ(F0)

τ(F1)

τ(F2)τ(F3)

τ(F4) {0}

R(R4)

R(R3)

R(R5)

R(R2)

R(B)

R(R1)

R(F4)

R(F3)

R(F5)

R(F2)

R(F0)

R(F1)

R({0})

Figure 4.6: The type A2 Coxeter arrangement. On the left is the zonotope created

by the τ map in Lemma 4.2.21. On the right we label each face with the root

inversion set for that face. See Example 4.2.20 and Example 4.2.23.

The following lemma shows the relationship between a root being present in a

root inversion set and the sign of the covector for the associated hyperplane. An

example of this relationship can be seen in Figure 4.5 and Figure 4.6.

Lemma 4.2.16 For any F ∈ FA and H ∈ A,

(1) F (H) = − if and only if eH ∈ R(F ) and −eH /∈ R(F ).

(2) F (H) = 0 if and only if eH ∈ R(F ) and −eH ∈ R(F ).

(3) F (H) = + if and only if eH /∈ R(F ) and −eH ∈ R(F ).

In other words,

R(F )+ = {eH | H ∈ A, F (H) ≤ 0} and R(F )− = {−eH | H ∈ A, F (H) ≥ 0} .

Proof. We show the first case, the other cases being similar. Recall that e ∈ R(F )

if and only if 〈x, e〉 ≤ 0 for x ∈ int(F ). Furthermore, since −e /∈ R(F ) we
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have 〈x, e〉 < 0. By definition of the sign map, since 〈x, e〉 < 0 we have σH(x) = −,

i.e., F (H) = − as desired.

Conversely if F (H) = − then σH(x) = − for x ∈ int(F ) ⊆ F . Then 〈x, e〉 <

0 implying that e ∈ R(F ). Furthermore, 〈x,−e〉 > 0 gives −e /∈ R(F ) as

desired.

Corollary 4.2.17 For any F ∈ FA and e ∈ ΦA, we have R(F ) ∩ {e,−e} 6= ∅.

Following up Theorem 4.2.9, we are now ready to show our second main result,

providing two more equivalent descriptions of the facial weak order. Recall that

for X ⊆ ΦA, we set X+ :=X ∩ Φ+
A and X− :=X ∩ Φ−A.

Theorem 4.2.18 The following assertions are equivalent for two faces F,G ∈ FA:

(3) F ≤L G in terms of covectors,

(4) R(F )rR(G) ⊆ Φ−A and R(G)rR(F ) ⊆ Φ+
A,

(5) R(F )+ ⊆ R(G)+ and R(F )− ⊇ R(G)−.

Proof of Theorem 4.2.18. The points (4) and (5) are clearly equivalent. We thus

just need to prove the equivalence between (3) and (5).

(3) ⇒ (5) Assume that F ≤L G so that G(H) ≤ F (H) for all H ∈ A by

Theorem 4.2.9. Then for any H ∈ A, we obtain by Lemma 4.2.16 that

• if eH ∈ R(F ), then F (H) ≤ 0, so that G(H) ≤ 0, so that eH ∈ R(G),

• if −eH ∈ R(G), then G(H) ≥ 0, so that F (H) ≥ 0, so that −eH ∈ R(F ).

Therefore R(F )+ ⊆ R(G)+ and R(F )− ⊇ R(G)−.
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(5) ⇒ (3) Assume that R(F )+ ⊆ R(G)+ and R(F )− ⊇ R(G)−. Then for

any H ∈ A, we obtain by Lemma 4.2.16 that

• if G(H) = +, then eH /∈ R(G), so that eH /∈ R(F ), so that F (H) = +,

• if G(H) = 0, then −eH /∈ R(G), so that −eH /∈ R(F ), so that F (H) ≥ 0.

Therefore G(H) ≤ F (H) for all H ∈ A, so that F ≤L G as desired.

4.2.4 Zonotopes

We conclude this section with an interpretation of the root inversion sets in terms

of the geometry of certain polytopes associated to hyperplane arrangements.

Recall that a polytope is the convex hull of finitely many points in V , or equiva-

lently a bounded intersection of finitely many half-spaces of V . The faces of P are

its intersections with its supporting hyperplanes (and the faces ∅ and P itself),

and its facets are its codimension 1 faces. For a face F of a polytope P , the

inner primal cone of F is the cone C(F ) generated by {u− v | u ∈ P , v ∈ F},

and the outer normal cone of F is the cone C�(F ) generated by the outer normal

vectors of the facets of P containing F . Note that these two cones are dual to

one another. The normal fan of P is the complete polyhedral fan formed using

the outer normal cones of all faces of P . See (Ziegler, 1995) for more details.

Here, we still consider a normal vector eH to each hyperplane H ∈ A such that the

base region B is contained in the positive half-space H+ = {v ∈ V | 〈eH , v〉 ≥ 0}.

We are interested in the corresponding zonotope defined below. Details on zono-

topes can be found in the book by G. M. Ziegler (Ziegler, 1995) and in the article

by P. McMullen (McMullen, 1971).
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Definition 4.2.19 The zonotope ZA of the arrangementA is the convex polytope

ZA :=
{ ∑
H∈A

λHeH

∣∣∣∣∣ − 1 ≤ λH ≤ 1 for all H ∈ A
}
.

Example 4.2.20 The zonotope for a Coxeter arrangement is called a permuta-

hedron, see (Hohlweg, 2012b). We have represented on the left of Figure 4.6 the

zonotope of the arrangement of Example 4.1.1 and Figure 4.2. It has 6 vertices

corresponding to the 6 regions of the arrangement, and 6 edges corresponding to

the 6 rays of the arrangement.

Note that this zonotope depends upon the choices of the normal vectors eH of the

hyperplanes H ∈ A, but its combinatorics does not. Namely, P. H. Edelman gives

in (Edelman, 1984, Lemma 3.1) a bijection between the nonempty faces of the

zonotope ZA and the the faces FA of the arrangement A using the τ map (given

in the following lemma) which was first defined by McMullen in (McMullen, 1971,

p. 92).

Lemma 4.2.21 The map τ defined by

τ(F ) =
{ ∑
F 6⊆H

F (H)eH +
∑
F⊆H

λHeH

∣∣∣∣∣ − 1 ≤ λH ≤ 1 for all F ⊆ H ∈ A
}

is a bijection from the faces FA to the nonempty faces of the zonotope ZA. More-

over, F is the outer normal cone C�
(
τ(F )

)
of τ(F ), so that the fan of the ar-

rangement A is the normal fan of ZA.

We now relate the root inversion sets of § 4.2.3 to the faces of the zonotope ZA.

Proposition 4.2.22 The cone of the root inversion set R(F ) is the inner primal

cone of the face τ(F ) in the zonotope ZA, i.e.,

cone
(
R(F )

)
= C

(
τ(F )

)
and R(F ) = C

(
τ(F )

)
∩ ΦA.
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Proof. Let F be an arbitrary face in FA and let u be a point in ZA. By con-

struction we have u = ∑
H∈A λHeH where |λH | ≤ 1 for all H ∈ A. Let v be

a point in τ(F ). The inner primal cone associated to F in the zonotope ZA,

is C
(
τ(F )

)
= {u− v | u ∈ ZA and v ∈ τ(F )}.

More explicitly, ifH ∈ AF then the eH component of u−v is given by (λH − λ′H)eH
where |λH | ≤ 1 and |λ′H | ≤ 1. In particular ±eH ∈ C

(
τ(F )

)
. If H /∈ AF then the

component of eH for u− v is given by (λH −µH)eH where |λH | ≤ 1 and µH = ±1.

Recall from Lemma 4.2.21 that µH = −1 if F (H) = −, etc. Suppose µH = +1,

then−eH ∈ C
(
τ(F )

)
, but eH /∈ C

(
τ(F )

)
. Similarly, when µH = −1, eH ∈ C

(
τ(F )

)
and −eH /∈ C

(
τ(F )

)
.

Example 4.2.23 An example of the equality between the cone of the root in-

version set with the inner primal cone of the face of the associated zonotope can

be seen in Figure 4.6 for the type A2 Coxeter arrangement. In Figure 4.6 we have

the zonotope ZA on the left and the root inversion set for each face on the right.

For a face F of A, the cone of the root inversion set of F is the same as the inner

primal cone of τ(F ) in ZA.

4.3 Lattice properties of the facial weak order

It was shown in (Dermenjian et al., 2018) that the facial weak order on Coxeter

arrangements is a lattice. The aim of this section is to extend this result to any

hyperplane arrangement with a lattice of regions.

Theorem 4.3.1 If A is an arrangement where PR(A, B) is a lattice, then

FW(A, B) is a lattice.

In order to prove this result we use the BEZ lemma which provides a local criterion

to characterize finite posets which are lattices.
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Lemma 4.3.2 ((Björner et al., 1990, Lemma 2.1)) If L is a finite, bounded poset

such that the join x∨ y exists whenever x and y both cover some z ∈ L, then L is

a lattice.

So the proof of Theorem 4.3.1 reduces to proving the following statement.

Theorem 4.3.3 Let A be a hyperplane arrangement where PR(A, B) is a lattice

and let X, Y, Z be three faces of A. If Z lFW X and Z lFW Y , then the join

X ∨FW Y exists.

The proof of this theorem is the aim of the next two sections. The idea of the

proof is as follows. We first consider our cover relations Z lFW X and Z lFW Y .

We know from Corollary 4.2.10 that this is equivalent to |dimZ − dimX| = 1,

Z ≤FW X, and either Z ⊆ X or X ⊆ Z and similarly for Y . By symmetry of X

and Y , we thus obtain the following three cases:

(1) X ∪ Y ⊆ Z and dimX = dim Y = dimZ − 1,

(2) Z ⊆ X ∩ Y and dimX = dim Y = dimZ + 1, and

(3) X ⊆ Z ⊆ Y and dimX + 1 = dim Y − 1 = dimZ.

In each case we consider the subarrangement associated to the largest face con-

tained in all three faces. For case (1) we consider the subarrangement associated

to the face X ∩ Y , AX∩Y = {H ∈ A | X ∩ Y ⊆ H}, for case (2) we consider the

subarrangement AZ = {H ∈ A | Z ⊆ H} and for case (3) we consider the sub-

arrangement AX = {H ∈ A | X ⊆ H}. In the next subsection we show that the

join in the poset of regions of a subarrangement can be extended to a join in the

poset of regions of the arrangement itself. Finally, for each case we find the join

inside the appropriate subarrangement, culminating in the proof of Theorem 4.3.3.
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Before we begin, we give a conjecture stating that the converse of Theorem 4.3.1

is true as well.

Conjecture 4.3.4 For any hyperplane arrangement A and any base region B

of A, the poset of regions PR(A, B) is a lattice if and only if the facial weak

order FW(A, B) is a lattice.

4.3.1 Joins and subarrangements of faces

A subarrangement of an arrangement A is a subset A′ of A. There is a natural

map FA → FA′ that projects each face G in FA to the smallest face GA′ in FA′

such that the relative interior of G is contained in the relative interior of GA′ ,

i.e., for H ∈ A′ then GA′(H) = G(H). Note that this map is surjective and

preserves the facial weak order: if F ≤FW G in A, then FA′ ≤FW GA′ in A′.

We particularly focus on the following special subarrangements. For a face F ∈ FA,

let AF := {H ∈ A | F ⊆ H} be the subarrangement of A with all hyperplanes

which contain F . This subarrangement AF is known as the support of F or the

localization of A to F . We denote by πF the projection map FA → FAF
described

above in this specific case, and we often use the shorthand GF for πF (G) = GAF
.

Note that the surjection πF restricts to a bijection between {G ∈ FA | F ⊆ G}

and FAF
.

Example 4.3.5 Figure 4.7 gives an example of these maps for the subarrange-

ment AF1 of the type A2 arrangement discussed in Example 4.1.1. Since H2 is

the only hyperplane containing F1, our subarrangement contains one hyperplane

AF1 = {H2}. Then πF1 : FA → FAF1
is the map with the following equalities
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(some of which are shown in the figure, but not all).

πF1(R2) = πF1(F2) = πF1(R3) = πF1(F3) = πF1(R4)

πF1(F1) = πF1(0) = πF1(F4)

πF1(R1) = πF1(F0) = πF1(B) = πF1(F5) = πF1(R5)

It can be seen in the figure that πF1 is a bijection from {R1, R2, F1} to AF1 .

Given an arrangement A whose poset of regions PR(A, B) is a lattice, it is not

necessary that any arbitrary subarrangement will also have a lattice of regions.

However, when the subarrangement is associated to a face, then the lattice prop-

erty of the poset of regions is preserved through facial intervals. This follows

from the well-known fact that an interval of a lattice is a lattice. This lattice

property, combined with the fact that the base region of a lattice of regions is

always simplicial (see (Edelman, 1984, Theorem 3.1 and 3.4)) gives the following

proposition.

Proposition 4.3.6 Let A be an arrangement whose poset of regions PR(A, B) is

a lattice. For a face F ∈ FA the subarrangement AF is a central subarrangement

and PR(AF , BF ) is a lattice of regions with simplicial base region BF .

H3H1

H2

F0

F1

F2F3

F4

F5
B

R1

R2

R3

R4

R5

H2
πF1(0)

πF1(B) = πF1(F0)

πF1(R3) = πF1(F3)

Figure 4.7: The map πF1 from an arrangement A to a subarrangement AF1 . See

Example 4.3.5.
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Lemma 4.3.7 For any three faces X, Y, Z ∈ FA such that [X, Y ] is an interval

in FW(A, B) and Z ⊆ X∩Y , then the interval [X, Y ] in FW(A, B) is isomorphic

to [XZ , YZ ] in FW(AZ , BZ).

Proof. We first prove that the mapW 7→ WZ defines an injective order preserving

map from [X, Y ] to [XZ , YZ ]. Let W ∈ [X, Y ]. We aim to show Z is a face of W .

By Proposition 4.2.4 it suffices to show Z(H) = W (H) when Z(H) 6= 0. Suppose

that there is H ∈ A such that Z(H) 6= W (H) and Z(H) 6= 0. This implies

Z(H) = X(H) = Y (H). As W ∈ [X, Y ], then Y (H) ≤ W (H) ≤ X(H). Hence

W (H) = X(H) = Z(H), a contradiction. Therefore, Z is a face of W . Thus, the

localization map [X, Y ]→ [XZ , YZ ] is injective.

The inverse map [XZ , YZ ] → [X, Y ] is defined by extending WZ to a covector W

with W (H) = Z(H) for H ∈ A r AZ . As this map is also order preserving, the

proof is complete.

This lemma gives us another way to view facial intervals as the faces of a subar-

rangement. With the above lemma, given a facial interval [mF ,MF ] for a face F ,

then mF (resp. MF ) is the region in A associated to the base region BF (resp. to

its opposite region −BF ) in FAF
. We now show that a join in the poset of regions

of a subarrangement extends to a join in the poset of regions of the arrangement

itself. The following is possible by Proposition 4.3.6.

Proposition 4.3.8 For any three faces X, Y, Z ∈ FA such that Z ⊆ X ∩ Y , if

there exists a face W containing Z such that WZ = XZ ∨FW YZ in FW(AZ , BZ)

then W = X ∨FW Y in FW(A, B).

Proof. Suppose U ∈ FA is a face such that X ≤FW U and Y ≤FW U . Since

the projection map πF : FA → FAF
preserves the facial weak order, we have

that WZ = XZ ∨FW YZ ≤FW UZ in the facial weak order of the subarrangement.
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In other words, for all H ∈ AZ , we have UZ(H) ≤ WZ(H), and thus U(H) ≤

W (H).

Next let H ′ be a hyperplane in A r AZ . Since H ′ /∈ AZ , we have Z(H ′) 6= 0.

Furthermore, by Proposition 4.2.4, 0 6= Z(H ′) = X(H ′) = Y (H ′) = W (H ′)

since Z ⊆ X ∩ Y and Z ⊆ W . Then, sinceX ≤FW U , we have U(H ′) ≤ X(H ′) = W (H ′).

In other words, U(H) ≤ W (H) for all H ∈ A. Therefore W ≤FW U imply-

ing W = X ∨FW Y .

4.3.2 Joins in subarrangements

As discussed, we now describe the three distinct cases that arise using the cover

relations of the facial weak order. Then, for each case, we restrict ourselves to the

subarrangement associated to the largest face contained in all three faces and find

the join in the subarrangement. Combining these results with Proposition 4.3.8

proves Theorem 4.3.3.

Consider three faces X, Y, Z ∈ FA such that Z lFW X and Z lFW Y . Recall

that by Corollary 4.2.10, we have Z lFW X if and only if |dimZ − dimX| = 1,

Z ≤FW X, and either Z ⊆ X or X ⊆ Z, and similarly for Y . By symmetry on X

and Y , this gives us three different cases:

(1) X ∪ Y ⊆ Z and dimX = dim Y = dimZ − 1,

(2) Z ⊆ X ∩ Y and dimX = dim Y = dimZ + 1, and

(3) X ⊆ Z ⊆ Y and dimX + 1 = dim Y − 1 = dimZ.

We now look at each case individually. We have broken down their proofs into

three subsections to better facilitate their reading. We let B(R) denote the set of
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boundary hyperplanes of a region R.

First case: X ∪ Y ⊆ Z and dimX = dim Y = dimZ − 1

Since X ∩ Y is the largest face contained in X, Y and Z, we restrict to the

subarrangement AX∩Y and find the join there. An example (in rank 2) is given in

Figure 4.8. By Proposition 4.3.6, the poset of regions PR(AX∩Y , BX∩Y ) is a lattice.

Thus, without loss of generality, it suffices to prove the following proposition.

Proposition 4.3.9 Consider an arrangement A whose poset of regions is a

lattice with three faces X, Y and Z such that Z lFW X, Z lFW Y , {0} = X ∩ Y

and X ∪ Y ⊆ Z. Then {0} = X ∩ Y = X ∨FW Y .

Proof. We first prove that X ≤FW X ∩ Y = {0}. Assume by contradiction that

there is H ∈ A such that X(H) = −. Since X ⊆ Z, we obtain that Z(H) = −

by Proposition 4.2.4. Moreover, since Z lFW Y , we have Y (H) ≤ Z(H) = −.

H2H1

YX

... ...

B = Z

0 = X ∩ Y

Figure 4.8: The construction of the join for the first case when X ∪ Y ⊆ Z.



153

Let [mZ ,MZ ] be the facial interval in the poset of regions associated to Z. As

dimX = dim Y = dimZ − 1, there exist boundary hyperplanes H1 and H2

of mZ such that X = Z ∩ H1 and Y = Z ∩ H2. Since X 6= Z 6= Y , we ob-

tain by Lemma 4.2.7 that Z(H1) 6= 0 6= Z(H2). Since 0 = X(H1) ≤ Z(H1)

and since 0 = Y (H2) ≤ Z(H2), then we conclude that Z(H1) = Y (H1) = +

and Z(H2) = X(H2) = +.

Let A′ := {H1, H2, H} be the subarrangement of A with these three hyperplanes.

Since Z(H1) = Z(H2) = + and Z(H) = −, the face ZA′ is a region in A′.

Moreover, we have (X ∩ Y )A′(H) = 0 because (X ∩ Y )(H) = 0. We thus obtain

thatH1 andH2 are the only boundary hyperplanes of ZA′ inA′. Therefore, for any

region R ∈ RA′ r {ZA′}, then either H1 or H2 is in the separation set S(R,ZA′).

Since ZA′(H1) = ZA′(H2) = +, then either R(H1) = − or R(H2) = −. It follows

that no region of A′ is all positive, a contradiction since the base region BA′ is all

positive.

We conclude that X(H) ≥ 0 for all H ∈ A, so that X ≤FW X ∩ Y = {0}. By

symmetry, we also obtain that Y ≤FW X ∩ Y = {0}.

Finally, to prove that {0} = X ∩ Y = X ∨FW Y , we consider an arbitrary face U

in A such that X ≤FW U and Y ≤FW U . Then, U(H) ≤ min
(
X(H), Y (H)

)
for all H ∈ A. Since (X ∩ Y )(H) = 0 ≤ min

(
X(H), Y (H)

)
for all H ∈ A,

the faces X and Y of FA are contained in B by Corollary 4.2.6. By Proposi-

tion 4.3.6, B is simplicial and therefore, there exists H3, H4 in B(B) such that

X∩Y = X∩H3 = Y ∩H4 with X(H) = Y (H) = 0 for all H ∈ B(B)r {H3, H4}.

Note that H3 and H4 could be the same H1 and H2 as before. Therefore,

0 = min
(
X(H), Y (H)

)
for all H ∈ B(B). We conclude that U(H) ≤ 0 for

all H ∈ B(B). By Corollary 4.2.6, U(H) ≤ 0 for all H ∈ A. Therefore,

X ∩ Y ≤FW U .
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Second case: Z ⊆ X ∩ Y and dimX = dim Y = dimZ + 1

Since Z is the largest face contained in X, Y and Z, we restrict to the subarrange-

ment AZ and find the join there. An example (in rank 2) is given in Figure 4.9.

By Proposition 4.3.6, the poset of regions PR(AZ , BZ) is a lattice. Therefore,

without loss of generality, we consider an arrangement A whose poset of regions

is a lattice with distinct faces X, Y , and Z = {0} such that {0} = Z lFW X and

{0} = Z lFW Y . Observe that this implies by Corollary 4.2.6 that X and Y are

rays of the region −B opposite to the base region B. Since PR(A, B) is a lattice,

−B is simplicial, and therefore there is a 2-dimensional face W of −B containing

both X and Y . This gives us the join of X and Y .

Proposition 4.3.10 Consider an arrangement A whose poset of regions is

a lattice with distinct faces X, Y , and Z = {0} such that {0} = Z lFW X

and {0} = Z lFW Y . Then X ∨FW Y = W where W is the 2-dimensional face

of −B containing both X and Y .

H1H2

Y X

W

... ...

B

0 = Z

Figure 4.9: The construction of the join for the second case when Z ⊆ X ∩ Y .
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Proof. Since X ⊆ W are all faces of −B, we have X ≤FW W by Corollary 4.2.14.

Similarly, we have Y ≤FW W .

Conversely, consider a face U ∈ FA such that X ≤FW U and Y ≤FW U . For

any H ∈ A, we have X(H) ≤ 0 by Corollary 4.2.6 since X is a face of −B.

Since X ≤FW U , we have U(H) ≤ X(H) ≤ 0 for all H ∈ A, which implies that U

is a face of −B by Corollary 4.2.6. Since X ≤FW U , Corollary 4.2.14 implies

that X ⊆ U . Similarly, Y ⊆ U and thus W ⊆ U . We conclude that W ≤FW U

by Corollary 4.2.14.

Third case: X ⊆ Z ⊆ Y and dimX + 1 = dim Y − 1 = dimZ

Since X is the largest face contained in X, Y and Z, we restrict to the subarrange-

ment AX and find the join there. An example (in rank 2) is given in Figure 4.10.

By Proposition 4.3.6, the poset of regions PR(AX , BX) is a lattice. Therefore,

without loss of generality, we consider an arrangement A whose poset of regions

H2H1

Z W

−W

Y−Z

Y

... ...0 = X

Figure 4.10: The construction of the join in the third case when X ⊆ Z ⊆ Y .
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is a lattice with three faces X = {0}, Y and Z such that Z lFW X = {0},

Z lFW Y and {0} = X ⊆ Z ⊆ Y . Observe that this implies that Z is a ray of

the base region B by Corollary 4.2.6. Remember that for two faces F and G, we

denote by F−G the reorientation of F by G (see § 4.2.1). Observe that Z is a ray

of the 2-dimensional cone Y−Z , and let W denote its other ray. We aim to prove

the following proposition.

Proposition 4.3.11 Let A be an arrangement with a lattice of regions and three

faces X = {0}, Y and Z such that ZlFWX = {0}, ZlFWY and {0} = X ⊆ Z ⊆ Y .

Then X ∨FW Y = −W where W is the ray of Y−Z distinct from Z.

We will prove that X ∨FW Y = −W in Lemma 4.3.14 and Lemma 4.3.15. We

first identify two crucial boundary hyperplanes of the base region B.

Lemma 4.3.12 There exists two unique boundary hyperplanes H1 and H2 of the

base region B such that {0} = X = Z ∩H1 and Z = Y ∩H2.

Proof. As Z is a ray of the (simplicial) base region B, there is a uniqueH1 ∈ B(B)

such that {0} = X = Z∩H1. For the second hyperplane, we first claim that there

is a unique boundary hyperplane H2 of the base region such that Y (H2) = −

while Z(H2) = 0. Indeed, if there were two such hyperplanes H2 and H ′2, we

would have Z ( Y ∩ H2 ( Y contradicting that dim Y = dimZ + 1. Moreover,

since Z ≤FW Y , there is no hyperplane H such that Y (H) = + and Z(H) = 0.

We conclude that H2 is the unique hyperplane of B(B) such that Z = Y ∩H2.

Lemma 4.3.13 Consider the two boundary hyperplanes H1 and H2 of the base

region given in Lemma 4.3.12. Then

0 = W (H1) = X(H1) < Y (H1) = Z(H1) = +,

− = Y (H2) < X(H2) = 0 = Z(H2) < W (H2) = +, and

0 = W (H) = X(H) = Y (H) = Z(H) for all H ∈ B(B)r {H1, H2}.
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Proof. Since X = {0}, we have X(H) = 0 for all H ∈ B(B). By definition of H1

and H2 and Lemma 4.2.7, we have X(H1) = 0 6= Z(H1) and Z(H2) = 0 6= Y (H2).

Since Z ≤FW X and Z ≤FW Y , this implies that Z(H1) = + and Y (H2) = −.

Moreover, as Z is a face of Y , we obtain that Y (H1) = +. Finally, for any

hyperplane H ∈ B(B)r {H1, H2}, we have Z(H) = 0 by uniqueness of H2, and

therefore Y (H) = 0 since dim Y = dimZ + 1 and Z = Y ∩H2.

By definition of the reorientation operation, we thus obtain that Y−Z(H1) = +

and Y−Z(H2) = +, while Y−Z(H) = 0 for all H ∈ B(B)r {H1, H2}. In other

words, Y−Z is the 2-dimensional face of the base region B given by its intersection

with all hyperplanes of B(B)r {H1, H2}. Finally, since W is the ray of Y−Z
distinct from Z, we obtain thatW (H1) = 0, thatW (H2) = + and thatW (H) = 0

for all H ∈ B(B)r {H1, H2}.

Lemma 4.3.14 We have X lFW −W and Y ≤FW −W in the facial weak order.

Proof. By Lemma 4.3.13, W (H) ≥ 0 for all H ∈ B(B), therefore W (H) ≥ 0 for

all H ∈ A by Corollary 4.2.6. We therefore obtain that both W and Z are rays

of the base region B, and thus Y−Z is a 2-dimensional face of B as well.

SinceX = {0} andW is a ray of the base region B, we have that −W (H) ≤ X(H)

for anyH ∈ A so thatX ≤FW −W . SinceX ⊆ −W and dim(−W )−dim(X) = 1,

we obtain that X lFW −W by Proposition 4.1.13.

Assume now by contradiction that Y 6≤FW −W . Then there exists H ∈ A

such that Y (H) < −W (H). Since W (H) ≥ 0, it implies that Y (H) = −

and W (H) = 0. But since Y−Z(H) ≥ 0, we obtain by definition of reorienta-

tion that Z(H) = 0 and Y−Z(H) = +. We conclude that W (H) = Z(H) = 0

while Y−Z = +, contradicting the fact that Y−Z is the 2-dimensional face with

rays W and Z.
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Lemma 4.3.15 We have X ∨FW Y = −W .

Proof. Consider a face U of FA such that X ≤FW U and Y ≤FW U . We have

that U(H) ≤ X(H) = 0 for all H ∈ A and, moreover, U(H2) ≤ Y (H2) = −.

Therefore, we obtain that U is a face of −B and −W ⊆ U . We conclude

that −W ≤FW U by Corollary 4.2.14.

4.3.3 Further lattice properties of the facial weak order

We end this section by describing some lattice properties of the facial weak order.

In particular we show that the lattice is self-dual, show the poset of regions is a

sublattice, describe all the join-irreducible elements and show semidistributivity.

Duality

Recall that the dual of a lattice (L,≤) is the order (L,≤op) where for u, v ∈ L,

we have u ≤ v if and only if v ≤op u. A lattice is self-dual if it is isomorphic to its

dual. As with the poset of regions, the facial weak order is self-dual. This follows

from the fact that the poset of regions is itself self-dual and from the fact that the

negative of every covector must also be in the set of covectors by the definition of

oriented matroid.

Proposition 4.3.16 The map F 7→ −F := {−v | v ∈ F} is a self-duality of the

facial weak order FW(A, B).

Sublattice

In this subsection we show that if A is simplicial, not only is PR(A, B) an induced

subposet of FW(A, B) by Remark 4.1.12 and a lattice by Theorem 4.1.3, but it

is in fact a sublattice of FW(A, B). Recall that a sublattice L′ of a lattice L is
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an induced subposet such that u ∨ v ∈ L′ and u ∧ v ∈ L′ for any u, v ∈ L′. The

proof requires the following lemma which, just like the BEZ lemma, gives us a

local way to verify if a subposet is a sublattice of a lattice, see (Reading, 2016,

Lemma 9-2.11). Recall that a poset is connected when the transitive closure of

its comparability relation forms a single equivalence class.

Lemma 4.3.17 If P is a connected finite induced subposet of a lattice L such

that x ∨ y ∈ P for all x, y, z ∈ P with z l x and z l y, and x ∧ y ∈ P for

all x, y, z ∈ P with xl z and y l z, then P is a sublattice of L.

With this tool, we can prove the following statement.

Proposition 4.3.18 For a simplicial arrangement A, the lattice of regions is a

sublattice of the facial weak order FW(A, B).

Proof. By Remark 4.1.12, PR(A, B) is an induced subposet of FW(A, B). It is

clearly connected as it contains the minimal and maximal elements of FW(A, B).

Finally, by Proposition 4.3.16, we just need to prove one of the two criteria of

HXHY

Z

X Y

V

... ...
W

Figure 4.11: The construction of the join when X and Y are regions.
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Lemma 4.3.17. Consider thus three distinct regions X, Y, Z ∈ RA such that

ZlPRX and ZlPRY . See Figure 4.11 for a (rank 2) example. Since ZlPRX, there

is a hyperplaneHX separatingX and Z such that S(X) = S(Z)∪{HX}. Similarly,

there is a hyperplane HY separating Y and Z such that S(Y ) = S(Z) ∪ {HY }.

Since Z is simplicial, the faceW :=Z∩HX ∩HY has codimension 2. We thus con-

sider the rank 2 subarrangement AW . Since Z(HX) = Z(HY ) = +, the face ZW
is the base region of AW . Moreover, since we have XW (HX) = X(HX) = −

and we have YW (HY ) = Y (HY ) = −, the join V of XW and YW in AW satis-

fies V (HX) = V (HY ) = − and is thus the opposite of the base region in AW . By

Proposition 4.3.8, the join of X and Y is the face U of A containing W and such

that UW = V . We conclude that X ∨ Y is full dimensional, thus is a region. This

concludes the proof by Lemma 4.3.17 and Proposition 4.3.16.

Join-irreducible elements

We next aim to find all the join-irreducible elements of the facial weak order. An

element x of a finite lattice L is join-irreducible if x 6= ∨
L′ for all L′ ⊆ Lr {x}.

Equivalently, x is join-irreducible if and only if it covers exactly one element x?
of L. A meet-irreducible element y is defined in a similar manner where y? is the

unique element covering y.

For ease of notation, we denote by JIrr(FW) and JIrr(PR) (resp. MIrr(FW)

and MIrr(PR)) the sets of join-irreducible (resp. meet-irreducible) elements in the

facial weak order and in the poset of regions.

It turns out that the join-irreducible elements of the facial weak order are charac-

terized by the join-irreducible elements of the poset of regions. Each regionR ∈ JIrr(PR)

gives a join-irreducible face R in the facial weak order. Additionally, the facet be-

tween R and the unique region R? it covers in the poset of regions is also a
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join-irreducible element in the facial weak order. We give a small lemma before

characterizing the join-irreducible elements in the facial weak order of a simplicial

arrangement.

Lemma 4.3.19 Suppose A is a simplicial hyperplane arrangement and F a face

of the arrangement. There exists exactly codim(F ) facets of F weakly below F in

the facial weak order.

Proof. If F is a codimension codim(F ) face then its span is the intersection of at

least codim(F ) hyperplanes. Since A is simplicial, exactly codim(F ) of these hy-

perplanes bound the base region ofAF . LetH be this set of bounding hyperplanes.

For each H ∈ H there exists a unique face G such that G(H) = + and G(H ′) = 0

for all H ′ ∈ Hr{H} since the base region must be simplicial by Proposition 4.3.6.

In other words, there exists exactly codim(F ) many codimension codim(F ) − 1

faces covered by F in the facial weak order.

Proposition 4.3.20 Suppose A is a simplicial hyperplane arrangement and let

F be a face with associated facial interval [mF ,MF ]. Then F ∈ JIrr(FW) if and

only if MF ∈ JIrr(PR) and codim(F ) ∈ {0, 1}.

Proof. We first suppose that F is join-irreducible in FW(A, B). Since a join-irre-

ducible element can cover at most one element, Lemma 4.3.19 implies codim(F ) ≤ 1.

Suppose first that codim(F ) = 0. Then F is a region and mF = MF = F . Let F?
be the unique face covered by F . By Corollary 4.2.10, |dim(F )− dim(F?)| = 1 and

therefore codim(F?) = 1. Therefore, there exists a unique hyperplane H bound-

ingMF such that H ∈ S(MF ) and H∩MF = F?. Thus, there is a unique region R

such that S(R) = S(MF )r {H}. In other words, MF ∈ JIrr(PR).

Suppose next that codim(F ) = 1. Again by Corollary 4.2.10 only codimen-

sion 0 and codimension 2 faces can be covered by F in the facial weak order. By
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Lemma 4.3.19 there exists at least one codimension 0 face covered by F . Therefore

F? is a region and, as F is join-irreducible, F does not cover any codimension 2

face. If contrarily MF /∈ JIrr(PR) then there exists a boundary hyperplane H

of MF such that H ∩MF 6= F . Let G = H ∩MF . Then G ∩ F is a face with

codimension 2 such that G∩F ⊆ F and MF = MG. Thus G∩F is a codimension

2 face covered by F , a contradiction.

To show the other direction, we conversely suppose that MF ∈ JIrr(PR) and

codim(F ) ∈ {0, 1}. Since MF ∈ JIrr(PR) it covers the unique region MF ? and

there is a unique face G between the two regions with facial interval [MF ?,MF ].

If codim(F ) = 0 then F = MF and, since only codimension 1 faces can be covered

by F , then G is the unique facet of F which is covered by F , i.e., F ∈ JIrr(FW).

If codim(F ) = 1 then F = G andMF ?lFWF by construction. To prove F doesn’t

cover another face it suffices to observe that if there was another face G′ covered

by F it must be of codimension 2 by Lemma 4.3.19. But then, MF ∩ G′ = G′

since G′ ⊆ F ⊆MF . In other words, there exists a second facet to MF weakly

below MF by simpliciality, a contradiction.

As we saw previously, these join-irreducibles come in pairs. This comes from

introducing the edges of the poset of regions as vertices in the facial weak order.

Corollary 4.3.21 Let F and F ′ be faces of codimension 1 and 0 respectively

such that F lFW F ′. Then F is join-irreducible in the facial weak order if and

only if F ′ is join-irreducible in the facial weak order.

Proof. If F is a codimension 1 face then there exists a unique codimension 0

face covering it. Conversely, for every codimension 0 face (excluding the base

region) there is at least one codimension 1 face covered by it. In other words,

F exists if and only if F ′ exists (where F ′ is not the base region). Furthermore,

F lFW F ′ implies F is the face strictly below the region F ′. In other words,
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MF = MF ′ . But this implies MF ∈ JIrr(PR) if and only if MF ′ ∈ JIrr(PR). Since

codim(F ) = 1 and codim(F ′) = 0 this implies F is join-irreducible if and only

if F ′ is join-irreducible.

Recalling that our lattice is self-dual by Proposition 4.3.16 we have the following

two corollaries.

Corollary 4.3.22 Suppose A is a simplicial arrangement and let F be a face with

associated facial interval [mF ,MF ]. Then F ∈ MIrr(FW) if and only ifmF ∈ MIrr(PR)

and codim(F ) ∈ {0, 1}.

Corollary 4.3.23 Let F and F ′ be faces of codimension 0 and 1 respectively

such that F lFW F ′. Then F is meet-irreducible in the facial weak order if and

only if F ′ is meet-irreducible in the facial weak order.

Semidistributivity

In this subsection, we show that our lattice is semidistributive. A lattice is join-

semidistributive if x ∨ y = x ∨ z implies x ∨ y = x ∨ (y ∧ z). Similarly, a lattice

is meet-semidistributive if the dual condition holds. A lattice is semidistributive

if it is both meet-semidistributive and join-semidistributive.

Recall that for a join-irreducible element x, the unique element it covers is denoted

by x?, i.e., x?l x. Likewise, for a meet-irreducible element y, the unique element

covered by it is denoted y?, i.e., y l y?. Given a join-irreducible element x and

a meet-irreducible element y for a finite lattice L, we say that (x?, x) and (y, y?)

are perspective if x ∧ y = x? and x ∨ y = y?. We have the following lemma, see

(Freese et al., 1995, Theorem 2.56).
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Lemma 4.3.24 A finite lattice is meet-semidistributive if and only if for every

join-irreducible element x there exists a unique meet-irreducible element y such

that (x?, x) and (y, y?) are perspective.

We will use the following theorem, see (Reading, 2003, Theorem 3).

Theorem 4.3.25 For a simplicial arrangement A, its poset of regions is a

semidistributive lattice.

It turns out that due to the self-duality of the facial weak order and its intimate

connection with the poset of regions that perspective pairs do exist. This will give

us that the facial weak order is semidistributive. Recall that JIrr(FW) (JIrr(PR))

and MIrr(FW) (MIrr(PR)) are the sets of join-irreducible and meet-irreducible

elements in the facial weak order (poset of regions) respectively.

Proposition 4.3.26 The facial weak order is meet-semi-distributive.

Proof. By Lemma 4.3.24 it suffices to show for every face F ∈ JIrr(FW) there

exists a unique face G ∈ MIrr(FW) such that (F?, F ) and (G,G?) are perspective,

i.e., F ∧FW G = F? and F ∨FW G = G?. An example can be seen in Figure 4.12.

Let [mF ,MF ] denote the facial interval of F . Since F ∈ JIrr(FW), by Proposi-

tion 4.3.20, MF ∈ JIrr(PR) and codimF ∈ {0, 1}.

mF = F?

F

MF = F ′ G′

MG′ = G′?

mG′ = G

Figure 4.12: Meet-semidistributivity in the facial weak order.
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Suppose codim(F ) = 1. Since F ∈ JIrr(FW) by Lemma 4.3.19 there exists

a unique face F ′ of codimension 0 such that F lFW F ′ and MF = MF ′ . By

Corollary 4.3.21 F ′ ∈ JIrr(FW) with F = F ′?. We then have the following chain

of covers F? lFW F = F ′? lFW F ′.

Since MF ′ = MF ∈ JIrr(PR), by Theorem 4.3.25 and Lemma 4.3.24, there exists

a unique meet-irreducible region MG such that ((MF ′)?,MF ′) and (MG, (MG)?)

are perspective in the poset of regions. Let G = MG be the codimension 0 face

associated to the region MG. Since MG = mG is meet-irreducible in the poset of

regions, then G is meet-irreducible in the facial weak order by Corollary 4.3.22

since it is of codimension 0. Then, by definition of meet-irreducible, there exists

a unique face G′ of codimension 1 such that GlFW G′. Furthermore, by Corol-

lary 4.3.23, G′ is meet-irreducible in the facial weak order with mG = mG′ . We

then have the following chain of covers GlFW G? = G′ lFW G′?.

Recalling that ((MF ′)?,MF ′) and (MG, (MG)?) are perspective in the poset of

regions, and furthermore, since MF ′ = MF and MG = mG = mG′ we have:

MF ∧PR mG′ = mF MF ∨PR mG′ = MG′ . (�)

This implies that the pair (F?, F ) and (G,G?) and the pair (F ′?, F ′) and (G′, G′?)

are both perspective. Indeed, looking at the first case (F?, F ) and (G,G?), we want

to show F ∧FW G = F? and F ∨FW G = G? = G′. For F ∧FW G = F?, since F

covers only F? by definition of join-irreducible, it suffices to show F? ≤FW G.

Similarly, since G is only covered by G? = G′, to show F ∨FW G = G′, it suffices

to show F ≤FW G′. To show F ≤FW G′ it suffices to observe that mF ≤PR mG′

andMF ≤PR MG′ . Indeed, by (�), we haveMF ∧PR mG′ = mF , implyingmF ≤PR mG′

and MF ∨PR mG′ = MG′ giving MF ≤PR MG′ as desired. To show F? ≤FW G we

follow a similar approach by proving that mF? ≤PR mG and MF? ≤PR MG.

Since MF ∧PR mG = MF ∧PR mG′ = mF = mF? , therefore mF? ≤PR mG. Also,
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since G and F? are of codimension 0 we have MF? = mF? ≤PR mG = MG as de-

sired. Therefore F? ≤FW G in the facial weak order.

The case (F ′?, F ′) and (G′, G′?) is handled similarly.

Notice that the case where codim(F ) = 0 was handled in the proof above since F ′

is a join-irreducible element in the facial weak order with codimension 0.

Combining this proposition with the fact that the lattice is self-dual, we get join-

semidistributivity for free. In particular, we get that our lattice is semidistributive.

Theorem 4.3.27 For a simplicial arrangement A, the facial weak order is

semidistributive.

4.4 Topology of the facial weak order

In this section, we determine the homotopy type of intervals of the facial weak

order; see Theorem 4.4.6. Before proving this theorem, some preliminary results

on the topology of posets are given in § 4.4.1.

4.4.1 Poset topology

In this section, we recall some standard tools and definitions concerning simplicial

complexes that we use in the proof of Theorem 4.4.6. The main result we need is

Lemma 4.4.1.

An abstract simplicial complex ∆ is a ground set E with a collection ∆ of subsets

of E (called faces) such that if F ∈ ∆ and G ⊆ F then G ∈ ∆. The dimension

of a face F ∈ ∆ is given by dim(F ) = |F | − 1 and the dimension of ∆ is the

maximal dimension of all faces. An abstract simplicial complex of dimension d

can be realized geometrically in R2d+1 by a union of simplices well-defined up
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to homeomorphism. We denote this geometrical realization by ‖∆‖. The dele-

tion del∆(F ) of F from ∆ is the subcomplex of faces disjoint from F . The link

lk∆(F ) of F is the subcomplex of faces G for which F ∩G = ∅ and F ∪G is a face

of ∆. The join ∆ ∗∆′ of two complexes with disjoint ground sets is the simplicial

complex with faces F t F ′ where F ∈ ∆, F ′ ∈ ∆′. The cone {v} ∗∆ is the join

of ∆ with a one-element complex. The suspension susp ∆ is the join of ∆ with a

discrete two-element complex. A fundamental homotopy equivalence connecting

the deletion and link to the original complex is the following, which can be proved

using the Carrier Lemma (e.g. (Walker, 1981, Lemma 2.1)).

Lemma 4.4.1 Let F be a face of a simplicial complex ∆.

(1) If lk∆(F ) is contractible, then ∆ is homotopy equivalent to del∆(F ).

(2) If del∆(F ) is contractible, then ∆ is homotopy equivalent to the suspension

of lk∆(F ).

Given elements x, y of a poset P , the open interval (x, y) (resp. closed inter-

val [x, y]) is the set of z ∈ P such that x < z < y (resp. x ≤ z ≤ y). We let P<x
(resp. P>x) denote the set of elements y ∈ P such that y < x (resp. y > x). The

order complex ∆(P ) of a poset P is the simplicial complex of chains x0 < · · · < xd

of elements of P . The link of a face x0 < · · · < xd is isomorphic to the join of the

order complexes of P<x0 , (x0, x1), . . . , (xd−1, xd), P>xd
. Hence, the local topology

of ∆(P ) is completely determined by the topology of open intervals and principal

order ideals and filters of P . In the remainder of this section, whenever we write

about the topology of P , we mean the topology of its order complex.

In § 4.4.2, we explicitly determine the homotopy types of intervals of the facial

weak order. To this end, we will use some consequences of Lemma 4.4.1.
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Lemma 4.4.2 Let P be a poset, and let X ⊆ P such that P<x is contractible for

all x ∈ X. Then P is homotopy equivalent to P rX.

Proof. Let X = {x1, x2, . . . , xn} so that whenever i ≤ j, we have xi ≮ xj. We

claim that P is homotopy equivalent to P r {x1, . . . , xi} for any i. First observe

that lk∆(P )(x1) = ∆(P<x1) ∗∆(P>x1) is contractible, so P is homotopy equivalent

to P r {x1}. More generally, from the assumption on the ordering of elements

of X, we have lk∆(Pr{x1,...,xi−1})(xi) = ∆(P<xi
) ∗ ∆′ for some simplicial complex

∆′. This is again contractible, so by induction, P is homotopy equivalent to

P r {x1, . . . , xi}. Taking i = n, we have completed the proof.

A closure operator (resp. dual closure operator) on a poset P is an idempotent,

order preserving, increasing (resp. decreasing) function f : P → P .

Lemma 4.4.3 (Corollary 10.12 (Björner, 1995)) If f : P → P is a closure

operator or a dual closure operator, then P is homotopy equivalent to f(P ).

This lemma may be proved in many ways, e.g. by repeated application of Lemma 4.4.1

as we did for Lemma 4.4.2 or by application of Quillen’s Fiber Lemma (Björner,

1995, Theorem 10.5).

4.4.2 Topology of intervals of the facial weak order

Let A be a real, central hyperplane arrangement with base region B. As usual,

we orient the hyperplanes in A so that

B =
⋂
H∈A

H+.

Recall that the poset of regions PR(A, B) is the set of regions with the partial

order R ≤PR R′ if and only if S(R) ⊆ S(R′). With this ordering, B is the unique
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minimum element of the poset of regions. Given faces X, Y of A, we say that X

is incident to Y if X ⊇ Y .

P. H. Edelman and J. W. Walker determined the local topology of the poset of

regions (Edelman & Walker, 1985). As this result will be used in the proof of

Theorem 4.4.6, we state it here.

Theorem 4.4.4 ((Edelman & Walker, 1985)) For each face X ∈ FA, the set of

regions incident to X is an interval [R1, R2]≤PR of the poset of regions such that

the open interval (R1, R2)≤PR is homotopy equivalent to a sphere of dimension

codim(X)− 2. Every other interval is contractible.

Recall that span(X) denotes the subspace spanned by a face X. The poset of

intersection subspaces, or simply intersection poset, is the poset on the sub-

spaces L(A) = {⋂H∈I H | I ⊆ A} ordered by reverse inclusion. As before this

poset is a lattice when the vector space V is added as the bottom element

and is called the intersection lattice. For X and Y in L(A), the join is given

by X ∨L Y = X ∩ Y and the meet by X ∧L Y = ⋂
X∪Y⊆Z Z. For further informa-

tion on the intersection lattice we refer the reader to P. Orlik and H. Terao’s book

(Orlik & Terao, 1992, Section 2). For a face X, let AX denote the restriction of

A to span(X) where

AX = {H ∩ span(X) | H ∈ ArAX} .

The set AX is an arrangement of hyperplanes in the vector space spanned by X.

For a covector X, we recall the map πX : FA → FAX
where for any covector Y

of A, its image is the covector with πX(Y )(H) = Y (H) for H ∈ AX . Similarly,

one can define a map ιX : FAX → FA such that for a covector Y of AX we have

ιX(Y )(H) =


Y (H) if H ∈ AX

0 if H ∈ AX
.
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It is clear that ιX is injective, so if Y is a face of A contained in span(X), we

write (ιX)−1(Y ) for the corresponding face of AX . To simplify notation, we de-

fine Y X to be (ιX)−1(Y ) in this case.

Lemma 4.4.5 Let X, Y be covectors such that X ≤FW Y in FW(A, B), and let

Z be a covector such that span(Z) = span(X)∧Lspan(Y ). Then the interval [X, Y ]

of FW(A, B) is isomorphic to the interval [XZ , Y Z ] of FW
(
AZ , XZ ◦ (−Y Z)

)
.

Proof. For H ∈ A such that X(H) = 0 = Y (H), any covector W in the inter-

val [X, Y ] must satisfyW (H) = 0. Consequently, span(W ) ⊆ span(Z) forW ∈ [X, Y ],

so the restriction WZ is a covector of AZ . Moreover, the map [X, Y ]→ L(AZ)

is a bijection onto its image. Since span(XZ) ∧L span(Y Z) = span(Z) in the

intersection lattice, the concatenation XZ ◦ (−Y Z) is a region of AZ . More-

over, for H ∈ AZ , we have XZ ◦ (−Y Z)(H) = XZ(H) if XZ(H) 6= 0, and

XZ ◦ (−Y Z)(H) = + otherwise. Hence, XZ ≤FW Y Z in FW
(
AZ , XZ ◦ (−Y Z)

)
,

and if W ∈ [X, Y ], then WZ ∈ [XZ , Y Z ]. Conversely, every element of [XZ , Y Z ]

is the restriction of some covector in [X, Y ].

We are now ready to prove the main theorem. We make use of the fact that the

proper part of the face lattice of a polyhedral cone of dimension d is homeomorphic

to a sphere of dimension d− 2.

Theorem 4.4.6 Let A be an arrangement with base region B. Let X, Y be

covectors such that X ≤FW Y and set Z = X ∩ Y . If X ≤FW Z ≤FW Y and

Z = X−Z ∩ Y , then the order complex of the open interval (X, Y ) in FW(A, B)

is homotopy equivalent to a sphere of dimension dim(X)+dim(Y )−2 dim(Z)−2.

Every other interval is contractible.

Proof. Let X, Y ∈ FW(A, B) such that X ≤FW Y and set Z = X ∩ Y . Let Q

be the open interval (X, Y ) in the facial weak order. We determine the topology

of Q.
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If Z = X then Q is an interval in the face lattice, so it is homeomorphic to a

sphere of dimension dim(Y ) − dim(X) − 2, as desired. Similarly, if Z = Y , then

Q is homeomorphic to a sphere of dimension dim(X) − dim(Y ) − 2. Hence, we

may assume X, Y, Z are all distinct.

By Lemma 4.3.7, we may assume that Z = 0 since the poset Q = (X, Y ) is iso-

morphic to (XZ , YZ). Hence, we write −X for the covector X−Z . By Lemma 4.4.5,

we may assume that span(X) ∧L span(Y ) = V in the intersection lattice. In par-

ticular, X ◦ Y and Y ◦X are regions. We will make these assumptions for most

of the proof unless indicated otherwise.

Assume Z ∈ Q and Z = (−X) ∩ Y both hold, and let ∆ be the order complex of

Q. We prove that del∆({Z}) is contractible by induction on dim(Y ).

Let L>Y denote the set of faces strictly less than the face Y in the face lattice,

i.e., L>Y = {Z | Z >L Y } = {Z | Z ( Y }. Applying the inductive hypothesis

with Lemma 4.4.2, the poset Qr{Z} is homotopy equivalent to QrL>Y . We note

that this statement is vacuously true if dim(Y ) = 1. Set P = Qr L>Y . Define a

map f on the closed interval [X, Y ] of the facial weak order, where f(W ) = W ◦Y .

This is well-defined by Lemma 4.2.11. We claim that f is a closure operator. It is

clear that f is idempotent by properties of composition. Since Z <FW Y in the

facial weak order, every entry of Y is either 0 or −. Hence, f can only change some

0 entries of w to −, so it is order preserving and increasing. Since W ◦ Y ⊆ Y

only if W is a face of Y , the operator f restricts to P . Lemma 4.4.3 implies

that P ' f(P ).

Now define g on [X, Y ] where g(W ) = W ◦X. This map is a dual closure operator.

Assume that W ∈ Q such that g
(
f(W )

)
= X. Then f(W ) must be a face of

X. Since W is a face of f(W ), we deduce that W is a face of X. The set of

faces of X intersected with [X, Y ] is an order ideal of [X, Y ] in the facial weak
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order. Since (−X) ∩ Y = 0, the composite X ◦ Y is a region distinct from X.

Then X ◦ Y ≤FW W ◦ Y , so W ◦ Y is not a face of X. This is a contradiction.

Hence, g restricts to f(P ), and we conclude that P ' g
(
f(P )

)
.

Since X and Y have disjoint supports, the composite Y ◦ X is a region. Hence,

the image of g ◦ f is the set of regions in Q. This set of regions has a maximum

element, namely Y ◦X. Hence, it is contractible, as desired.

Since del∆({Z}) is contractible, we conclude that ∆ is homotopy equivalent to the

suspension of lk∆({Z}) by Lemma 4.4.1. By definition, lk∆({Z}) = ∆((X,Z)) ∗∆((Z, Y )).

But ∆((X,Z)) (resp. ∆((Z, Y ))) is the order complex of the proper part of the

face lattice of the cone X (resp. Y ). Hence, ∆((X,Z)) is homeomorphic to

Sdim(X)−dim(Z)−2. Since Sp ∗ Sq ∼= Sp+q+1 and susp(Sp) ' Sp+1, we have

∆ ' susp
(

lk∆({Z})
)

' susp
(
∆((X,Z)) ∗∆((Z, Y ))

)
' susp

(
Sdim(X)−dim(Z)−2 ∗ Sdim(Y )−rk(Z)−2

)
' Sdim(X)+dim(Y )−2 dim(Z)−2

Now assume that Z /∈ Q. We prove that Q is contractible.

Since Z is not between X and Y , there exists H ∈ A such that Z(H) = 0 and

either X(H) = Y (H) = − or X(H) = Y (H) = +. Replacing B with −B, we may

assume without loss of generality that X(H) = Y (H) = − and Z(H) = 0. If W

is any face of Y with W ≤FW Y , then W (H) = −. But (W ∩X) ⊆ Z, so W ∩X

is not between X and W . By induction, Q is homotopy equivalent to Q r L>Y .

Let P = QrL>Y . As before, we consider operators f and g on [X, Y ]. These two

operators again restrict to P , and g
(
f(P )

)
is the subposet of regions in Q. If Y is

not a region, then Y ◦X is the unique maximum element of g
(
f(P )

)
. If X is not

a region, then X ◦ Y is the unique minimum element of g
(
f(P )

)
. In either case,
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the interval Q = (X, Y ) is contractible. If both X and Y are regions, then Q is

contractible by Theorem 4.4.4 since g
(
f(P )

)
is an open interval of the poset of

regions that is not facial.

Finally, assume that Z ∈ Q but Z 6= X−Z ∩ Y . We prove that Q is contractible.

Assume X is not a region. Then Y ∩ (−X) is a proper face of Y , as otherwise

there would exist a hyperplane H ∈ A containing both X and Y . Let

P = Qr {W ∈ L>Y | (−X) ∩W 6= Z}

and P>Z = {W ∈ P | W > Z}. By induction, P is homotopy equivalent to Q.

Then P>Z is contractible since L>Y r {Z} is the proper part of the face lattice of

the cone Y , and P>Z is the deletion of some face from this sphere.

Consequently, P ' P r {Z}. We prove that P r {Z} is contractible by in-

duction on dim(Y ). We have already proved that (X, Y ′) r {Z} is contractible

for Y ′ ∈ L>Y ∩ P r {Z}. Hence, P r {Z} ' P r L>Y . Set P ′ = P r L>Y .

Using the operators f and g from before, we deduce that Q is homotopy equiv-

alent to g
(
f(P ′)

)
. Since X is not a region, g

(
f(P ′)

)
has a minimum element,

namely X ◦ Y . Hence, it is contractible.

If X is a region but Y is not a region, then a dual argument shows that Q is

contractible. Hence, we may assume both X and Y are regions. Since this is

the last remaining case, we deduce that for W ∈ Q the interval (X,W ) is not

contractible if and only if W is an upper face of X. Hence, Q is homotopy

equivalent to L>X . This set of covectors has a maximum element in Q, namely

W = Z. Hence, Q is contractible.



174

4.4.3 Möbius function

Recall that the Möbius function of a poset P is the function µ : P × P → Z

defined inductively by

µ(x, y) =



1 if x = y,

−∑x≤z<y µ(x, z) if x < y,

0 otherwise.

For more information on the Möbius function we refer the reader to (Stanley,

2011).

We recall that the Möbius function can be restated using its homotopy type. In

fact, µ(x, y)+1 = ∑(−1)i rankHi(∆((x, y))) where Hi(∆((x, y))) is the simplicial

ith homology group and ∆((x, y)) is the order complex for the open interval

(x, y). The rank of the ith homology group is sometimes referred to as the ith

Betti number .

Recall further that a contractible interval (x, y) has trivial homology (homotopy

equivalent to a point). Thus H0(∆((x, y))) ∼= Z and Hi(∆((x, y))) ∼= {0} for

all i > 0, i.e., ∑(−1)i rankHi(∆((x, y))) = 1. Therefore we have µ(x, y) = 0.

Additionally, recall that a sphere Sn has homology H0(Sn) ∼= Z, Hn(Sn) ∼= Z

and Hi(Sn) ∼= {0} for 0 < i < n, i.e., ∑(−1)i rankHi(∆((x, y))) = 1 + (−1)n.

Therefore if our interval (x, y) is homotopy equivalent to Sn we have µ(x, y) =

(−1)n. For more information on how the Möbius function relates to homology

we refer the reader to the book by Stanley (Stanley, 2011), the book by Munkres

(Munkres, 1984), or the chapter by Björner (Björner, 1995).

As a consequence to Theorem 4.4.6 we have the following corollary.

Corollary 4.4.7 Let A be an arrangement with base region B. Let X, Y be
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covectors such that X ≤FW Y and set Z = X ∩ Y .

µ(X, Y ) =


(−1)dim(X)+dim(Y ) X ≤FW Z ≤FW Y and Z = X−Z ∩ Y

0 otherwise.





CONCLUSION

In Chapter 1 we began by recalling the groups first introduced by Coxeter in

(Coxeter, 1934). Recall that these groups, called Coxeter groups, are intricately

related to reflection groups in the sense that each finite Coxeter group can be

represented by a finite reflection group (and vice-versa). We then continued our

study of Coxeter groups by defining the weak order, the order on the elements of

a Coxeter group first defined by Björner in (Björner, 1984), which turns out to

be a lattice for finite Coxeter groups. At the end of the first chapter we gave the

definition of the Coxeter complex for a given finite Coxeter group W and showed

that there is an isomorphism between the standard parabolic cosets of W and the

faces of the W -permutahedron. In order to extend the weak order of W to the

faces of the W -permutahedron, in Chapter 2 we introduced the facial weak order

(see Definition 2.2.1) for Coxeter groups. The facial weak order turns out to be

a lattice for finite Coxeter groups (see Theorem 2.2.19) extending the result that

for finite Coxeter groups the weak order is a lattice.

We then generalized the results in Chapter 2 to hyperplane arrangements. Chap-

ter 3 is dedicated to a survey on hyperplane arrangements and their associated

faces. Since each finite Coxeter group has an associated hyperplane arrangement,

called the Coxeter arrangement, we generalized the weak order to a poset on the

regions of an arrangement. This poset of regions is different than the weak or-

der in that it does not always produce a lattice like we would like. Fortunately,

the poset of regions turns out to be a lattice for a large family of arrangements

called simplicial arrangements (which include Coxeter arrangements). In order to

replicate our extension of the weak order to the faces of the permutahedron, in
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Chapter 4 we extended the poset of regions to an order on all faces of an arrange-

ment. We called this extension the facial weak order for hyperplane arrangements

and showed that the facial weak order is a lattice for simplicial arrangements (see

Theorem 4.1 in Chapter 4), generalizing the result that the poset of regions is a

lattice for simplicial arrangements.

These results are good starting points for research into the subject of the facial

weak order. We end this conclusion by presenting further research that we will

pursue in the coming years.

One of the first directions that we will pursue is to study in which case the facial

weak order of oriented matroids is a lattice. A tope of an oriented matroid (E ,L)

is the generalization of a region of a hyperplane arrangement. With the set of

topes, denoted T (L), the poset of regions is generalized to a tope poset by fixing

a base tope and ordering the separation sets of the topes (from the base tope)

by inclusion. A tope T is said to be simplicial if the interval [0, T ] in the face

lattice of an oriented matroid is isomorphic to a Boolean lattice. If every tope is

simplicial then the oriented matroid is said to be simplicial. Similarly to simplicial

hyperplane arrangements, it turns out that if the oriented matroid (E ,L) is sim-

plicial then the tope poset (T (L), B,≤T ) is a lattice for any choice of base tope

B and if the tope poset (T (L), B,≤T ) is a lattice, then B must be simplicial (see

(Björner et al., 1990, Theorems 6.3 and 6.5)). Due to this, one might conjecture

that the facial weak order in simplicial oriented matroids is a lattice. This turns

out to be the case if in addition to the oriented matroid being simplicial it is also

assumed to be simple (there are no loops and no distinct parallel elements in E).

This can be proved using similar techniques as in the hyperplane arrangement

case in Chapter 4.

In the case of hyperplane arrangements, we saw in Theorem 4.3.1 that if the poset
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of regions is a lattice then the facial weak order is a lattice. Additionally, when

the arrangement is simplicial then Proposition 4.3.18 says the poset of regions is

a sublattice of the facial weak order. This lead us to conjecture that when the

facial weak order is a lattice the poset of regions will always be a lattice as well.

Conjecture 5.4.8 (Conjecture 4.4 in Chapter 4) Let A be a (central) hyperplane

arrangement with poset of regions PR(A, B). Then PR(A, B) is a lattice if and

only if the facial weak order FW(A, B) is a lattice.

As another direction, in the cases where the facial weak order is a lattice, we will

study the properties of the facial weak order. One such property that we believe

the facial weak order to possess is congruence uniformity. A lattice is congru-

ence normal if it can be obtained from the one-element lattice by a sequence of

doublings of convex sets. As a stronger statement, a lattice is said to be congru-

ence uniform if it can be obtained from the one-element lattice by a sequence of

doublings of intervals, therefore giving us an algorithm for constructing the lattice

in an efficient manner. It is known that the weak order on finite Coxeter groups

is congruence uniform. This was first shown in the type A case by Caspard (see

(Caspard, 2000)) and then for all finite Coxeter groups by Caspard, Le Conte

de Poly-Barbut and Morvan (see (Caspard et al., 2004)). Since the facial weak

order extends the weak order in finite Coxeter groups, we expect the congruence

uniform property to hold in the facial weak order.

Conjecture 5.4.9 The facial weak order on a finite Coxeter group is a congru-

ence uniform lattice.

This is the case for the small examples we have tried by hand. To prove this

conjecture, it suffices to show that the facial weak order is congruence normal.

This is because it is known that a lattice is congruence uniform if and only if it is
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both semidistributive and congruence normal (see (Day, 1994, Theorem 2.2)) and

since we have already shown in Theorem 4.3.25 in Chapter 4 that the facial weak

order is semidistributive for finite Coxeter groups.

In the case of simplicial hyperplane arrangements, it is not necessarily true that

its poset of regions is a congruence uniform lattice. It turns out that the lattice

of regions of a simplicial hyperplane arrangement is congruence uniform in only

certain cases. We direct the reader to (Reading, 2003, §8) for more details on when

a lattice of regions for a simplicial hyperplane arrangement is congruence uniform.

For our purposes, we believe that the congruence uniform property should extend

into the facial weak order whenever it holds for the underlying poset of regions.

Conjecture 5.4.10 Let A be a simplicial hyperplane arrangement whose lat-

tice of regions (R, B,≤A) is congruence uniform. Then the facial weak order

FW(A, B) is congruence uniform.

If true, this conjecture would provide a lot of information on the congruences of

the facial weak order. For instance, the fact that if a lattice L is congruence

uniform, implies the join-irreducible elements of L are in bijection with the join-

irreducible elements of the lattice of congruences, con(L ), of L (see (Day, 1994,

p. 400)). Since we gave a description of the join-irreducible elements of FW(A, B)

in Proposition 4.28 in Chapter 4 this would give us a deeper understanding of the

join-irreducible elements of con(FW(A, B)).

Finally, as a long term project, we would try to replicate the facial weak order on

arbitrary polytopes and not just zonotopes. This would involve finding a proper

extension of the facial weak order for polytopes. One approach would involve the

inner primal cones as we did in both Coxeter groups and hyperplane arrangement

cases through the root inversion sets. If a facial weak order can be defined in this

way for polytopes, it would be interesting to know what properties a polytope
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must possess for the facial weak order to be a lattice. Finding such a definition

of the facial weak order on polytopes is already not so evident in 2-dimensional

Euclidean space. As an example take the equilateral triangle and start from any

vertex v. Unlike the case with a 2n-polygon which has a unique face (a vertex)

farthest from a staring vertex, for the equilateral triangle there are three faces

that are “equally” far from v (the two other vertices and the edge between them)

depending on our choice of definition for facial weak order. Even with a generic

linear functional (i.e., no two vertices lie at the same height) orienting the skeleton

of the polytope, it is unclear which polytopes admit such an orientation for which

their skeleton is the Hasse diagram. Finally, once a proper and natural definition

for the facial weak order is found on polytopes, the question of, for which polytopes

is the facial weak order a lattice, will be opened.





APPENDIX A

ORDER THEORY

In this appendix we survey the topic of order theory. We start by recalling partial

orders on sets (posets) in § A.1 and give a presentation of posets using diagrams.

Then in § A.2 we introduce the notions of joins and meets: a generalization of

greatest common divisor and least common multiple. Lattices, a special family of

posets where every two elements have a join and a meet, are surveyed in § A.3.

Finally, we describe maps between posets and lattices in § A.4. For a more

introductory background with more example on posets, the reader is referred to

the book “Enumerative Combinatorics: Volume 1” by Stanley (Stanley, 2011).

For further background on lattices, the interested reader is referred to the book

“Lattice theory” by Birkhoff (Birkhoff, 1967) or the book “General lattice theory”

by Grätzer (Grätzer, 1986).

A.1 Partial orders

In this section we recall the basic definitions of posets.

Let (P,4) be a partially ordered set (or poset for short). Recall that a and b

in P are said to be incomparable if there is not a relation between a and b,

i.e., neither a 4 b nor b 4 a, otherwise they are said to be comparable. A poset

in which every two elements are comparable is known as a totally ordered set and
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the order 4 is known as a total order . If P is finite we call the poset finite, else

we call it infinite.

Example A.1.1 Let N? = {1, 2, 3, . . .} be the set of natural numbers and let ≤

be the standard less than or equal to sign. Then ≤ is a total order and the infinite

poset (N?,≤) is a totally ordered set since there is a relation between every two

elements. As examples of the order ≤ we have the following relations: 3 ≤ 5,

9 ≤ 10, 2 ≤ 2, 1 ≤ 9, 001, etc.

Example A.1.2 Consider N? and let the partial order | be such that for a, b ∈ N?,

then a | b if and only if a divides b, i.e., b
a
∈ N?. In this poset we have 2 | 4

since 4
2 = 2 ∈ N?. Similarly, 2 | 42 since 42

2 = 21 ∈ N?.

Unlike our previous example, there are some numbers which are incomparable.

For example, neither 2 | 3 nor 3 | 2 are relations in this poset. This is due to the

fact that 2
3 and 3

2 are not integers. Therefore, 3 and 2 are incomparable.

We let (N?, |) denote this poset.

Example A.1.3 Let [n] = {1, 2, 3, . . . , n} and let 2n denote all subsets of [n],

i.e., 2n = {N | N ⊆ [n]}. Ordering the elements by inclusion gives the poset (2n,⊆),

called the Boolean poset. As examples of relations in (22,⊆), we have {1} ⊆ {1, 2} = [2]

and ∅ ⊆ {2}. As with our last example, the Boolean poset has elements which

are incomparable. For example, {1} and {2} are incomparable since neither is a

subset of the other.

An element b in P covers an element a in P (or a is covered by b), denoted a ≺· b,

if a ≺ b and if there does not exist any c ∈ P such that a ≺ c ≺ b. Recall that
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Figure A.1: The Hasse diagrams for (N?,≤), (N?, |), and (23,⊆) respectively.

the Hasse diagram1 of (P,4) is a graph with vertex set P and an upward edge

from a to b whenever a ≺· b.

The Hasse diagrams for (N?,≤), (N?, |) and (2n,⊆) are given in Figure A.1 from

left to right respectively.

The poset (N?, |) has an interesting property in that for any two elements in N?

there is a greatest common divisor and a least common multiple. We generalize

this property to arbitrary posets in the next section.

A.2 Joins and Meets

In the poset (N?, |) every two elements have a greatest common divisor (gcd) and

a least common multiple (lcm). In this section we extend this property to posets

in general.

1According to Birkhoff (Birkhoff, 1948) the term “Hasse diagram” was named after Hasse

due to his effective use of these diagrams in the 1920s in field theory and number theory (see

(Lemmermeyer & Roquette, 2012, § 3.18, § 5.2 and § 6.5) for examples).The first known instance

of a Hasse diagram can be traced back to at least 1895 by Vogt in (Vogt, 1895, p. 91) where

he uses these diagrams to show which groups are subgroups of other groups for the symmetric

group S4.Additionally, these diagrams also have a rich history in genealogy.
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Given a poset (P,4) and two elements a, b ∈ P then c ∈ P is an upper bound of a

and b if a 4 c and b 4 c. Similarly, a lower bound of a and b is an element d ∈ P

such that d 4 a and d 4 b. The join (or least upper bound) of a and b (if it exists)

is the unique upper bound z ∈ P such for every upper bound c of a and b we

have z 4 c. Similarly, the meet (or greatest lower bound) of a and b (if it exists)

is the unique lower bound y ∈ P such that for every lower bound d of a and b we

have d 4 y. If they exist, we denote the join of a and b as a ∨ b and the meet of

a and b as a ∧ b.

Examples A.2.1 In the examples we’ve been using, every two elements have a

meet and a join. For the poset (N?, |) the join is the lcm and the meet is the gcd.

For the poset (N?,≤) the join is the greater of the two numbers and the meet is

the lesser of the two numbers. In fact, for all total orders, since we always have

either a 4 b or b 4 a, then every two elements must have a join which is the

greater of the two, and a meet, which is the lesser of the two.

For the poset (2n,⊆) the join is given by the union of the two sets and the meet

is given by the intersection of the two sets. As an example, in (26,⊆) we have

{1, 4} ∨ {2, 4, 5} = {1, 2, 4, 5} and {1, 4} ∧ {2, 4, 5} = {4} .

Although in our examples we always have a join and a meet, this is not necessarily

always the case for arbitrary posets.

Example A.2.2 Let (P,4) be the poset with the following Hasse diagram:
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a

b c

d e

f

g

h

From the Hasse diagram we deduce that a ≺· b, a 4 d, c 4 e, etc. We can also

use the Hasse diagram to help find the meets and joins of particular elements.

For example, the join of e and g is f , i.e., e ∨ g = f . This can be observed from

the fact that e 4 f , g 4 f and there does not exist any other upper bound of e

and g. As another example, the meet of e and g is a, i.e., e ∧ g = a.

Although e and g have both a meet and a join, it can be observed that not every

two elements have a meet and join. For example the join b∨ c does not exist since

the set of upper bounds {d, e, f} of both b and c does not contain an element

which is weakly below every upper bound. Additionally, the meet of b and c, b∧c,

does not exist either since there are no lower bounds of both b and c.

Having a meet and a join for every pair of elements is a special property which

many posets have called the lattice property.

A.3 Lattices

In this section we survey lattices: posets where every pair of elements have a meet

and a join.

Let (L,4) be a poset. If every two elements in L have a join then the poset (L,4)

is called a join-semilattice. Similarly, if every two elements in L have a meet,

then (L,4) is said to be a meet-semilattice. If (L,4) is both a join-semilattice
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and a meet-semilattice, then (L,4) is called a lattice. If L is finite then we call

the lattice finite, else infinite.

For a finite lattice, since every two elements have a join, there is always some

element that is greater than every other element. This element is known as the

top element and is denoted by 1̂. Note that this is not the case with infinite

lattices as can be observed with (N?,≤). Similarly, for a finite lattice, there is

always a unique bottom element, denoted by 0̂, since every two elements have a

meet. The elements which cover the bottom element are called atoms. In other

words, if a is an atom then 0̂ ≺· a. Similarly, coatoms are elements which are

covered by the top element 1̂.

Example A.3.1 The three posets (N?,≤), (N?, |) and (2n,⊆) are all lattices

since every pair of elements has a meet and a join. On the other hand, the poset

in Example A.2.2 is not a meet-semilattice (not every two elements have a meet)

nor is it a join-semilattice (not every two elements have a join) and therefore it

is not a lattice. Since the Boolean poset (2n,⊆) is a finite lattice, it has a unique

top element given by 1̂ = [n] and a unique bottom element given by 0̂ = ∅. The

Boolean poset is commonly referred to as the Boolean lattice since it is a lattice.

Given a poset (P,4) it might not always be easy to verify if every pair of elements

has a meet and a join. An alternative method is to show that (P,4) is isomorphic

to a lattice. We survey maps between posets in the next section.

A.4 Poset Isomorphisms

In this section, we survey the notion of maps and isomorphisms between posets

and lattices.

Let (P,4P ) and (Q,4Q) be two posets. A function θ : P → Q is an order-
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preserving map if for p, p′ ∈ P then p 4P p
′ implies θ(p) 4Q θ(p′). The function θ

is order-reversing if p 4P p
′ implies θ(p′) 4Q θ(p). If the order-preserving map θ is

a bijection whose inverse is order-preserving (p 4P p
′ if and only if θ(p) 4Q θ(p′))

then θ is called a poset isomorphism and (P,4P ) and (Q,4Q) are said to be

isomorphic.

Given a poset (P,4), an induced subposet (or subposet for short) (P ′,4) of (P,4)

is the poset restricted to the elements P ′ ⊆ P and where for p, p′ ∈ P ′, p 4 p′

in (P ′,4) if and only if p 4 p′ in (P,4). If (L,4) is a lattice, then a sublattice

of (L,4) is a subposet (L′,4) such that, if a, b ∈ L′, then a ∧ b and a ∨ b are

also in L′. It should be noted that a subposet (L′,4) of (L,4) can be a lattice

without being a sublattice of (L,4). A useful subposet of any poset is an in-

terval of the poset. An interval in a poset (P,4) is a set [p, p′] with p, p′ ∈ P

where [p, p′] = {x ∈ P | p 4 x 4 p′}. Given a lattice L = (L,4), then it can be

verified that any interval [x, y] in L is a sublattice ([x, y],4) of L .

Example A.4.1 Let (2n,⊆) be the Boolean lattice of [n]. A sublattice of (2n,⊆)

is the Boolean lattice (2m,⊆) wherem ≤ n. In fact, (2m,⊆) is the interval [∅, [m]]

in the lattice (2n,⊆). There is an injective map from (2m,⊆) to (2n,⊆) which

sends a set M ∈ 2m to the set M ∈ 2n. It is easily verified that this map is

order-preserving. Similarly, there is a projective map from (2n,⊆) to (2m,⊆)

which sends N ∈ 2n to (N\([n]\[m])) ∈ 2m. This map is also order-preserving.

Example A.4.2 Let (P,4) be the lattice with the following Hasse diagram:

a

b c

d

e
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Let P ′ = {a, b, c, d} and P ′′ = {a, b, c, e} be two subsets of P . Then the induced

subposet (P ′,4) of (P,4) has the following Hasse diagram

a

b c

d

and the induced subposet (P ′′,4) of (P,4) has the following Hasse diagram

a

b c

e

Although both of these subposets are lattices, only (P ′,4) is a sublattice of (P,4).

The subposet (P ′′,4) is not a sublattice since b ∨P c = d /∈ P ′′. An easy way to

verify that (P ′,4) is a sublattice of (P,4) is to notice that P ′ is in fact the

interval [a, d] in the lattice (P,4), i.e., (P ′,4) = ([a, d],4).

The two subposets (P ′,4) and (P ′′,4) are isomorphic to one another through the

map θ : (P ′,4)→ (P ′′,4) where a 7→ a, b 7→ b, c 7→ c and d 7→ e.

The dual of a poset is the poset (P,4?
P ) where p 4?

P p
′ if and only if p′ 4P p. The

Hasse diagram for the dual poset can be thought of as taking the Hasse diagram of

the original poset and flipping it upside down. If (P,4P ) is isomorphic to (P,4?
P )

then we say that (P,4P ) is self-dual . We have the following theorem, see for

instance (Birkhoff, 1967).
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Theorem A.4.3 Let (P,4) be a self-dual poset with a, b ∈ P . Then

a ∧ b exists if and only if a ∨ b exists.

Example A.4.4 The Boolean lattice (2n,⊆) is self-dual. To observe this, let θ

be the following map

θ : (2n,⊆)→ (2n,⊇) such that N 7→ [n]\N .

The poset (2n,⊇) is dual to (2n,⊆) since N ⊆M impliesM⊇ N . Furthermore,

this map is an isomorphism since it preserves the order, is a bijection, and the

reverse map (N ⊇M 7→ [n]\N ⊆ [n]\M) is order-preserving as well.

Example A.4.5 Using the lattice (P,4) as in Example A.4.2, we can observe

that the lattice (P,4) is not self-dual. This is because there is no order-preserving

bijection from (P,4) to its dual, whose Hasse diagram is the following

a

b c

d

e

For lattices, we can use joins and meets in order to verify whether an isomor-

phism is present. A join-homomorphism is a map θ from a lattice (L,4L) to a

lattice (M,4M) such that θ(l ∨L l′) = θ(l) ∨M θ(l′) for all l, l′ ∈ L. Similarly, a

meet-homomorphism is a map θ such that θ(l∧L l′) = θ(l)∧M θ(l′) for all l, l′ ∈ L.

A homomorphism is a map θ : (L,4L) → (M,4M) such that θ is both a join-

homomorphism and a meet-homomorphism. Then a lattice isomorphism is a

lattice homomorphism which is bijective. Lattice isomorphisms are equivalent to

poset isomorphisms where our two posets are lattices, see (Birkhoff, 1967, Lemmas

II.3.1 and II.3.2)
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Theorem A.4.6 Given two lattices (L,4L) and (M,4M) and a map

θ : (L,4L)→ (M,4M)

between the two, then θ is a lattice isomorphism if and only if it is a poset iso-

morphism.
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abstract simplicial complex, 166

cone, 166

deletion, 166

dimension, 166

face, 166

dimension, 166

join, 166

link, 166

suspension, 166

arrangement, see hyperplane arrangement

ascent, 38

associahedra

generalized, 92

atom, 186

base region, 104

Betti number, 174

Boolean lattice, 182, 186

Boolean poset, see Boolean lattice

bottom element, 186

bounding hyperplane, see region, wall

braid relation, 18

Cambrian fan, 92

closure operator, 167

coatom, 186

comparable, 181

cone, 26, 166

inner primal, 27, 40, 144

outer normal, 27, 40, 144

polar, 27

congruence normal, 177

congruence uniform, 177

coroot, 37

covector, 108, 131

composition, 111, 132

opposite, 110, 132

reorientation, 112, 132

cover, 182

Coxeter arrangement, 35, 99, 123

chamber, 35

fundamental, 36

Coxeter complex, 31, 39
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Coxeter diagram, see Coxeter graph

Coxeter element, 90

Coxeter fan, 35

Coxeter graph, 15

Coxeter group, 14

finite, 14

irreducible, 15

reducible, 15

type, 15, 99

Coxeter system, 14, 36

Davis complex, 68

descent, 38

descent congruence, 87

descent set

root, 88

descent vector, 90

dihedral group, 13, 14

face lattice, 25, 40, 101, 123

face poset, 123

facial interval, 30, 126

facial weak order, 34, 43, 68, 120, 127

fan

complete, 36

essential, 36

normal, 40, 144

simplicial, 36

geometric representation, 18

greatest lower bound, see meet

Hasse diagram, 183

homomorphism, 189

hyperplane, 98

half-space, 98

hyperplane arrangement, 98, 119, 122

essential, 103, 122

face, 100, 123

incident, 168

localization, 148

support, 148

rank, 103, 122

restriction, 169

simplicial, 107, 119, 123

subarrangement, 147

incomparable, 181

intersection lattice, 168

intersection poset, 168

inversion set, 21, 38

root, 46, 82, 141

weight, 46, 82

inversion table, 47

join, 184

join-irreducible, 67, 79, 160

join-semidistributive, 163

lattice, 186
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Boolean, see Boolean lattice

face, see face lattice

finite, 186

homomorphism, 189

infinite, 186

isomorphism, 189

join-homomorphism, 189

meet-homomorphism, 189

sublattice, 158, 187

weak order, see weak order

lattice congruence, 69

least upper bound, see join

length, 18, 37

longest element, 21, 25

lower bound, 184

Möbius function, 63

meet, 184

meet-irreducible, 160

meet-semidistributive, 163

order complex, 167

order congruence, 69

order-preserving map, 187

order-reversing map, 187

oriented matroid, 115, 133

elimination axiom, 133

tope, 176

simplicial, 176

parabolic coset

standard, 30, 39

parabolic subgroup

standard, 29, 39

permutahedron, 26, 40, 144

perspective, 163

polytope, 25, 40, 144

face, 25, 40

facet, 25

vertex, 25

poset, 181

(induced) subposet, 187

Boolean, see Boolean lattice

dual, 158, 188

finite, 182

infinite, 182

interval, 187

closed, 167

open, 167

isomorphism, 187

join-semilattice, 185

lattice, see lattice

Möbius function, 173

meet-semilattice, 185

of regions, see poset of regions

self-dual, 158, 188

weak order, see weak order

poset of regions, 104, 119, 123, 168
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prefix, 23, 37

pseudoline, 116

arrangement, 116

quotient, 70

reduced word, 18, 37

reflection, 12, 20, 36

simple, 14, 36

reflection group, 12

finite, 35

region, 100, 119, 122

base, 123

simplicial, 107, 119, 123

wall, 106, 122

root, 20, 141

negative, 20, 37

positive, 20, 36

simple, 20, 36

root system, 36

semidistributive, 163

separation set, 104, 114, 119, 123, 132

sign map, 109, 131

face, 131

simple reflection, see reflection, simple

sublattice, see lattice, sublattice

subposet, see poset, (induced) subposet

suffix, 23

top element, 186

total order, 182

totally ordered set, 181

upper bound, 184

weak order, 23, 38

facial, see facial weak order

weight

fundamental, 37

zonotope, 119, 144
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