The facial weak order in hyperplane arrangements

Aram Dermenjian^{1,3}

Christophe $\operatorname{Hohlweg}^1$, Thomas $\operatorname{McConville}^2$ and $\operatorname{Vincent}\operatorname{Pilaud}^3$

¹Université du Québec à Montréal (UQAM) ²Mathematical Sciences Research Institute (MSRI) ³École Polytechnique (LIX)

30 May 2019

On this day in 1814 Eugène Catalan was born.

The facial weak order in hyperplane arrangements

2

Aram Dermenjian^{1,3}

Christophe Hohlweg¹, Thomas McConville² and Vincent Pilaud³

¹Université du Québec à Montréal (UQAM) ²Mathematical Sciences Research Institute (MSRI) ³École Polytechnique (LIX)

30 May 2019

On this day in 1814 Eugène Catalan was born.

History and Background - Hyperplanes

- $(V, \langle \cdot, \cdot \rangle)$ *n*-dim real Euclidean vector space.
- A *hyperplane H* is codim 1 subspace of V with normal e_H .

History and Background - Arrangements

- A hyperplane arrangement is $A = \{H_1, H_2, ..., H_k\}$.
- \mathcal{A} is *central* if $\{0\} \subseteq \bigcap \mathcal{A}$.
- Central \mathcal{A} is *essential* if $\{0\} = \bigcap \mathcal{A}$.

Example

Not central Not essential

Central Not essential

Central Essential

History and Background - Arrangements

- Regions $\mathcal{R}_{\mathcal{A}}$ connected components of V without \mathcal{A} .
- **Faces** \mathscr{F}_{A} intersections of closures of some regions.

- Base region $B \in \mathcal{R}_A$ some fixed region
- Separation set for $R \in \mathcal{R}_A$ $S(R) := \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$

- Base region $B \in \mathcal{R}_A$ some fixed region
- Separation set for $R \in \mathcal{R}_A$ $S(R) := \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$

- Base region $B \in \mathcal{R}_A$ some fixed region
- Separation set for $R \in \mathcal{R}_A$ $S(R) := \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$

- Base region $B \in \mathcal{R}_A$ some fixed region
- Separation set for $R \in \mathcal{R}_A$ $S(R) := \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$

- Base region $B \in \mathcal{R}_{\Delta}$ some fixed region
- Separation set for $R \in \mathcal{R}_{A}$ $S(R) := \{ H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B \}$
- Poset of Regions PR(A, B) where H_1 $R \leq_{\mathsf{PR}} R' \Leftrightarrow \mathcal{S}(R) \subseteq \mathcal{S}(R')$

- A region *R* is *simplicial* if normal vectors for boundary hyperplanes are linearly independent.
- \blacksquare \mathcal{A} is *simplicial* if all $\mathscr{R}_{\mathcal{A}}$ simplicial.

Example Simplicial Not simplicial

Theorem (Björner, Edelman, Zieglar '90)

If A is simplicial then PR(A, B) is a lattice for any $B \in \mathcal{R}_A$. If PR(A, B) is a lattice then B is simplicial.

Example

Theorem (Björner, Edelman, Zieglar '90)

If A is simplicial then PR(A, B) is a lattice for any $B \in \mathcal{R}_A$. If PR(A, B) is a lattice then B is simplicial.

Example

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order of Coxeter groups to an order on all the faces of its associated arrangement for type A (aka Braid arrangement).
- In 2006, Palacios and Ronco extended this new order to Coxeter groups of all types using cover relations.
- In 2016, D, Hohlweg and Pilaud showed this extension has a global equivalent and produces a lattice in Coxeter arrangements.

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order of Coxeter groups to an order on all the faces of its associated arrangement for type A (aka Braid arrangement).
- In 2006, Palacios and Ronco extended this new order to Coxeter groups of all types using cover relations.
- In 2016, D, Hohlweg and Pilaud showed this extension has a global equivalent and produces a lattice in Coxeter arrangements.
- Questions: Can we extend this to hyperplane arrangements? Can we find both local and global definitions? When do we actually get a lattice?

Facial Intervals

Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler '93)

Let \mathcal{A} be central with base region B. For every $F \in \mathscr{F}_{\mathcal{A}}$ there is a unique interval $[m_F, M_F]$ in $PR(\mathcal{A}, B)$ such that

$$[m_F, M_F] = \left\{ R \in \mathscr{R}_A \mid F \subseteq \overline{R} \right\}$$

Facial Weak Order

Let \mathcal{A} be a central hyperplane arrangement and \mathcal{B} a base region in $\mathscr{R}_{\mathcal{A}}$.

Definition

The *facial weak order* is the order FW(A, B) on \mathscr{F}_A where for $F, G \in \mathscr{F}_A$:

$$F \leq G \Leftrightarrow m_F \leq_{PR} m_G$$
 and $M_F \leq_{PR} M_G$

Cover Relations

Proposition (D., Hohlweg, McConville, Pilaud, '19+)

For $F, G \in \mathscr{F}_{\mathcal{A}}$ if

- 1. $F \leq G$ in FW(A, B)
- 2. $|\dim(F) \dim(G)| = 1$
- 3. $F \subseteq G$ or $G \subseteq F$ then $F \lessdot G$.

Covectors

- **covector** a vector in $\{-,0,+\}^{\mathcal{A}}$ with signs relative to hyperplanes.
- $\mathcal{L} \subseteq \{-,0,+\}^{\mathcal{A}}$ set of covectors

Example

$$F_4 \leftrightarrow (+,0,-)$$
 $F_4(H_1) = +; F_4(H_2) = 0; F_4(H_3) = -$

Covectors

- **covector** a vector in $\{-,0,+\}^{\mathcal{A}}$ with signs relative to hyperplanes.
- $\mathcal{L} \subseteq \{-,0,+\}^{\mathcal{A}}$ set of covectors

Example

$$F_4 \leftrightarrow (+,0,-)$$
 $F_4(H_1) = +; F_4(H_2) = 0; F_4(H_3) = -$

$$\begin{array}{c}
H_{1} \\
(0,-,-) \\
(+,-,-) \\
(+,-,-) \\
(+,+,0,-) \\
(+,+,-) \\
(+,+,-) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+)$$

Covector Definition

Definition

For $X, Y \in \mathcal{L}$:

$$X \leq_{\mathcal{L}} Y \Leftrightarrow X(H) \geq Y(H) \quad \forall H \text{ with } -<0<+$$

Zonotopes

Zonotope Z_A is the convex polytope:

$$Z_{\mathcal{A}} \coloneqq \left\{ v \in V \mid v = \sum_{i=1}^k \lambda_i e_i, \text{ such that } |\lambda_i| \le 1 \text{ for all } i \right\}$$

Theorem (Edelman '84, McMullen '71)

There is a bijection between $\mathscr{F}_{\mathcal{A}}$ and the nonempty faces of $Z_{\mathcal{A}}$ given by the map

$$\tau(F) = \left\{ v \in V \mid v = \sum_{F(H_i)=0} \lambda_i e_i + \sum_{F(H_j) \neq 0} \mu_j e_j \right\}$$
where $|\lambda_i| \le 1$ for all i and $\mu_i = F(H_i)$

Zonotope - Construction example

Root inversion sets

- lacksquare roots $\Phi_{\mathcal{A}} \coloneqq \{\pm e_1, \pm e_2, \dots, \pm e_k\}$
- root inversion set $\mathbf{R}(F) := \{ e \in \Phi_{\mathcal{A}} \mid \langle x, e \rangle \leq 0 \text{ for some } x \in F \}.$

Equivalent definitions

Theorem (D., Hohlweg, McConville, Pilaud '19+)

For $F, G \in \mathscr{F}_A$ the following are equivalent:

- $m_F \leq_{PR} m_G$ and $M_F \leq_{PR} M_G$ in poset of regions PR(A, B).
- There exists a chain of covers in FW(A, B) such that

$$F = F_1 \lessdot F_2 \lessdot \cdots \lessdot F_n = G$$

- $F \leq_{\mathcal{L}} G$ in terms of covectors $(F(H) \geq G(H) \ \forall H \in \mathcal{A})$
- $\mathbf{R}(F)\backslash\mathbf{R}(G)\subseteq\Phi_{\mathcal{A}}^{-}$ and $\mathbf{R}(G)\backslash\mathbf{R}(F)\subseteq\Phi_{\mathcal{A}}^{+}$.

Equivalence for type A₂ Coxeter arrangement

Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud '19+)

The facial weak order FW(A, B) is a lattice when A is simplicial.

Corollary (D., Hohlweg, McConville, Pilaud '19+)

The lattice of regions is a sublattice of the facial weak order lattice when A is simplicial.

Example: B₃ Coxeter arrangement

Properties of the facial weak order

Theorem (D., Hohlweg, McConville, Pilaud '19+)

- FW(A, B) is self-dual.
- lacksquare \mathcal{A} simplicial implies $FW(\mathcal{A}, \mathcal{B})$ is semi-distributive.
- \mathcal{A} simplicial and $X \in \mathscr{F}_{\mathcal{A}}$ then X is join-irreducible in $FW(\mathcal{A}, B)$ if and only if M_X is join-irreducible in $PR(\mathcal{A}, B)$ and $codim(X) \in \{0, 1\}$
- Möbius function: $X, Y \in \mathscr{F}_A$ let $Z = X \cap Y$.

$$\mu(X,Y) = egin{cases} (-1)^{\operatorname{rk}(X) + \operatorname{rk}(Y)} & \textit{if } X \leq Z \leq Y \textit{ and } Z = X_{-Z} \cap Y \\ 0 & \textit{otherwise} \end{cases}$$

Further Works

- Can we explicitly state the join/meet of two elements?
- When is the facial weak order congruence uniform?
- How many maximal chains are there?
- What is the order dimension?
- Can we generalize this to polytopes?

Thank you!