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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Hyperplanes

m (V, (")) - n-dim real Euclidean vector space.
m A hyperplane H is codim 1 subspace of V with normal ey.

Example
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Arrangements
m A hyperplane arrangementis A = {Hy, Ha, ..., Hk}.
m Ais central if {0} C N A.
m Central A is essential if {0} =N A.

Example
Not central Central Central
Not essential Not essential Essential
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Arrangements

m Regions %, - connected components of V without A.
m Faces .7, - intersections of closures of some regions.
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m Base region B € %, - some fixed region

m Separation set for R € %4
S(R) ={H € A| H separates R from B}

Hi Hs
Rs
R4 R
Ho
Rs Ry
B
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History and Background - Poset of regions
m Base region B € %, - some fixed region

m Separation set for R € %4
S(R) ={H € A| H separates R from B}
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History and Background - Poset of regions
m Base region B € %, - some fixed region

m Separation set for R € %4
S(R) ={H € A| H separates R from B}
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m Base region B € %, - some fixed region

m Separation set for R € %4
S(R) ={H € A| H separates R from B}

H, Hs
A
{H:, H3} {Hi, Hz}
H,
{Ha} {H:}
)
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m Base region B € %, - some fixed region

m Separation set for R € %4
S(R) ={H € A| H separates R from B}

m Poset of Regions PR(A, B) where
R<pr R & S(R) - S(R,) Hy

H.

A. Dermenjian (UQAM) The facial weak order in hyperplane arrangements



Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m A region R is simplicial if normal vectors for boundary
hyperplanes are linearly independent.
m A is simplicial if all 2, simplicial.

Example

S REL Not simplicial
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions

Theorem (Bjérner, Edelman, Zieglar '90)

If A is simplicial then PR(.A, B) is a lattice for any B € Z4. If
PR(A, B) is a lattice then B is simplicial.

Example
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions

Theorem (Bjérner, Edelman, Zieglar '90)

If A is simplicial then PR(.A, B) is a lattice for any B € Z4. If
PR(A, B) is a lattice then B is simplicial.

Example
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Background Hyperplane Arrangements
Poset of Regions
Motivation

Motivation

m In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order of Coxeter groups to an order on all the
faces of its associated arrangement for type A (aka Braid
arrangement).

m In 2006, Palacios and Ronco extended this new order to
Coxeter groups of all types using cover relations.

m In 2016, D, Hohlweg and Pilaud showed this extension has
a global equivalent and produces a lattice in Coxeter
arrangements.
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Background Hyperplane Arrangements
Poset of Regions
Motivation

Motivation

m In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order of Coxeter groups to an order on all the
faces of its associated arrangement for type A (aka Braid
arrangement).

m In 2006, Palacios and Ronco extended this new order to
Coxeter groups of all types using cover relations.

m In 2016, D, Hohlweg and Pilaud showed this extension has
a global equivalent and produces a lattice in Coxeter
arrangements.

m Questions: Can we extend this to hyperplane
arrangements? Can we find both local and global
definitions? When do we actually get a lattice?
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Intervals
Proposition (Bjoérner, Las Vergas, Sturmfels, White, Ziegler '93)

Let A be central with base region B. For every F € %, there is
a unique interval [mg, Mg in PR(A, B) such that

[me, Me] = {R € %4| FC R}

H; Hs

R\ p /F
F e o
H, 4 0 1

Rs R,

s/ B \F
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order

Let A be a central hyperplane arrangement and B a base
region in Z.

Definition
The facial weak order is the order FW(.A, B) on .%4 where for
F,Ge Z4:

F < G < mg <pr Mg and Mg <pr Mg
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
R
H4/ \Hz [Ry, Rs] [Re, Rs]

L]

Rs Ry
\8/ [Rs, Rd]

[As, Ra]

[R2, Re]

(B, Rs]

[R1, Re

[H5., R5] [Rh R1]

[B. Rs] [B.Ri]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
o [Rs, As]
R4/' \Re [R4~ R3] *

T T (Rs, Ra) *

~_ .

(R, Rs] o e [B R
[Rs, Rs]
[B, Rs] ° [B, Ri]
(B, B
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Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
o [Rs, As]
R4/' \Re [R4~ R3] *

T T (Rs, Ra) *

~_ .

(R, Rs] o e [B R
[Rs, Rs]
[B, Rs] ° [B, Ri]
(B, B
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
o [Rs, As]
R4/' \Re [R4~ R3] *

T T (Rs, Ra) *

[Rs,Rs] @ e [B,Rs]
[Rs, Rs]
[B, Rs] ° [B, Ri]

(B, Bl
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example

[As, As]
Ry Rz [Ra, Rs] ¢

(R, Rs]
T [Ra, R ) )
Rs @ N
\B
[Rs,Ri] o e [B R
[Rs, Rs] )
(B, Rs] . (B, Ai]
(B, B
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Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
o [Rs, As]
R4/' \Re [R4~ R3] *

T T (Rs, Ra) *

~_ .

(R, Rs] o e [B R
[Rs, Rs]
[B, Rs] ° [B, Ri]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
o [Rs Rs]
m/ \Re [Ra, R3 [Rz, Rs)

T T [Ra, Ra] /’ / \ [Re, Re]

Rs Ry °
., T
[Rs, Ra] T e [B, Rs] [R1, Ro]

\ / [R17R1

[B, Ri]

A\

o —e— e

[Rs, Rs] \

(B, Rs]

E/\

@

]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Cover Relations

Proposition (D., Hohlweg, McConville, Pilaud, '19+)

ForF,G e %y if

1. F< GinFW(A, B) F R E
3 2
2. |dim(F) — dim(G)| = 1 R
Ri A~ N, R
3. FCGorGCF T \ / T
then F < G. £ o L
Fa Rs Fz I \ I
R4 Rz RS ‘\. ./ R1
Fa Fi N
Rs Ry B
i/ ™ \Fo
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Covectors
m covector - a vector in {—, 0, +}* with signs relative to
hyperplanes.
m £ C{—,0 +}"- setof covectors

Fa < (+,0,—)  Fa(Hi)=+; Fa(Hz2) =0; Fa(Hs) = —
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Covectors
m covector - a vector in {—, 0, +}A with signs relative to
hyperplanes.
m £ C{—,0, +}"- set of covectors

F4H(+,O,—) F4(H1)I+; F4(H2)IO; F4(H3):—
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Covector Definition

For X,Y e L:

X<, Yo XH) >YH) YHwith— <0<+
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Zonotopes
m Zonotope Z, is the convex polytope:

k
Zy = {v eV|v= ZA/e,-, such that |\;| < 1 for all i}
i=1

Theorem (Edelman 84, McMullen *71)

There is a bijection between %4 and the nonempty faces of Z,
given by the map

T(F):{VE V]iv= Z A€ + Z uje,}

F(H;)=0 F(H;)#0
where |\;| < 1 for all i and p; = F(H))
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Zonotope - Construction example

Hz
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Root inversion sets
m roots ® 4 = {tey,+en,...,tex}

m root inversion set
R(F) ={ecd4| (x,e) <0forsome x € F}.
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Equivalent definitions

Theorem (D., Hohlweg, McConville, Pilaud ’19+)

For F, G € %, the following are equivalent:
B mg <pr Mg and Mg <pr Mg in poset of regions PR(.A, B).
m There exists a chain of covers in FW(A, B) such that

F=Fi<Fkh< - -<F=G

m F <, G interms of covectors (F(H

)= G(H)VH € A)
= R(F)\R(G) C ¢ and R(G)\R(F) C %,
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Equivalence for type A, Coxeter arrangement
Fs (A3, As] T —e3 .2 -
[ ] [ ]
B S [m‘,m.]/f \\[fz,ﬂzl ﬁ./« ,\ ‘\°>L & g e
B
T T T T B
[Rs. Ry o[B,R;] @Ry, R, 14- o % °>IR(F)\R(G)£¢A
me <pg Mg T T T T TRG\R(F) C o7
Vesele it/ N\ oln S0/ \ 0
[B, F’sr\ 45 Ryl ‘\o/‘
N
3 /,'13,\ F ©, - (:';;(\i)s. )
F<G ° ° ° [
FgGorGgFH4o/' No =g Ne =P
ldimF —dimGl =1 T T T T F(H) > GH) vH € A
Fy @ e 0 o Fy (+,0, —® ¢0,0,0) e—.,0,+)
T ) T / T
Ff5°'\. ./‘.F‘w (++3J\. ./(3++>
s Ne” Fo (+,+, 0~ 07, +, +)
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud *19+)

The facial weak order FW(A, B) is a lattice when A is simplicial.

Corollary (D., Hohlweg, McConville, Pilaud ’19+)

The lattice of regions is a sublattice of the facial weak order
lattice when A is simplicial.
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Example: B; Coxeter arrangement




Properties
. Further Works
Properties

Properties of the facial weak order

Theorem (D., Hohlweg, McConville, Pilaud *19+)

m FW(A, B) is self-dual.
m A simplicial implies FW(.A, B) is semi-distributive.

m A simplicial and X € %4 then X is join-irreducible in
FW(A, B) if and only if Mx is join-irreducible in PR(A, B)
and codim(X) € {0,1}

m Mébbius function: X, Y € Zy letZ=XnNY.

(—1)kXO+k(Y) jfX<Z<YandZ=X_ynY
0 otherwise

WX, Y) = {
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Properties
. Further Works
Properties

Further Works

m Can we explicitly state the join/meet of two elements?

m When is the facial weak order congruence uniform?

m How many maximal chains are there?

m What is the order dimension?

m Can we generalize this to polytopes?
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Properties
Further Works

Properties

Thank you!
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