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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Hyperplanes

m (V, (")) - n-dim real Euclidean vector space.
m A hyperplane H; is codim 1 subspace of V with normal e;.

Example
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Arrangements

m A hyperplane arrangementis A = {Hy, Ha, ..., Hk}.
m Ais centralif {0} C N A.
m Central A is essential if {0} =N A.

Example
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Arrangements

m Regions % - connected components of V without A.
m fFaces .7 4 - intersections of closures of some regions.
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Fa Fi
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - (Partial) Orders
m Lattice - poset where every two elements have a meet
(greatest lower bound) and join (least upper bound).

The lattice (N, |) where a< b < a|b.
m meet - greatest common divisor
m join - least common multiple
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m Base region B € % - some fixed region

m Separation set for R € #
S(R) ={H € A| H separates R from B}

Hi Hs
Rs
R4 R
Ho
Rs Ry
B
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m Base region B € % - some fixed region

m Separation set for R € #
S(R) ={H € A| H separates R from B}

H, Hs
A
{H:, H3} {Hi, Hz}
H,
{Ha} {H:}
)
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m Base region B € % - some fixed region

m Separation set for R € #
S(R) ={H € A| H separates R from B}

m Poset of Regions (%, B, < 1) where
R <4 R < S(R) C S(R) Hy

H.
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m A region R is simplicial if normal vectors for boundary
hyperplanes are linearly independent.
m A is simplicial if all Z simplicial.

Example
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions

Theorem (Bjérner, Edelman, Zieglar '90)

If A is simplicial then (%, B, < ) is a lattice for any B € %. If
(Z2,B, <) is a lattice then B is simplicial.

Example
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History and Background - Poset of regions

Theorem (Bjérner, Edelman, Zieglar '90)

If A is simplicial then (%, B, < ) is a lattice for any B € %. If
(Z2,B, <) is a lattice then B is simplicial.

Example
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Background Hyperplane Arrangements
Poset of Regions
Motivation

Coxeter Arrangements

A Coxeter arrangement is the hyerplane arrangement
associated to a Coxeter group.

Coxeter Groups Hyperplane Arrangements

Reflecting hyperplanes <> Hyperplane arrangement

Root system <> Normals to hyperplanes

Inversion sets «+» Seperation sets
“~

Weak order Poset of regions
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Background Hyperplane Arrangements
Poset of Regions
Motivation

Motivation

m In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order of Coxeter groups to an order on all the
faces of its associated arrangement for type A.

m In 2006, Palacios and Ronco extended this new order to
Coxeter groups of all types using cover relations.

m In 2016, D, Hohlweg and Pilaud showed this extension has
a global equivalent and produces a lattice in Coxeter
arrangements.
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Background Hyperplane Arrangements
Poset of Regions
Motivation

Motivation

m In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order of Coxeter groups to an order on all the
faces of its associated arrangement for type A.

m In 2006, Palacios and Ronco extended this new order to
Coxeter groups of all types using cover relations.

m In 2016, D, Hohlweg and Pilaud showed this extension has
a global equivalent and produces a lattice in Coxeter
arrangements.

m Questions: Can we extend this to hyperplane
arrangements? Can we find both local and global
definitions? When do we actually get a lattice?
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Intervals
Proposition (Bjoérner, Las Vergas, Sturmfels, White, Ziegler '93)

Let A be central with base region B. For every F € % 4 there is
a unique interval [mg, Mg in (%, B, <) such that
[me,Me] = {Re | FCRJ

H; Hs

R\ p /F
F e o
H, 4 0 1

Rs R,

s/ B \F
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order

Let A be a central hyperplane arrangement and B a base
region in Z.

Definition
The facial weak order is the order FW(.A, B) on .% 4 where for
F,Ge Z:

F< G mep <4 mgand Mg <4 Mg
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
R
H4/ \Hz [Ry, Rs] [Re, Rs]

L]

Rs Ry
\8/ [Rs, Rd]

[As, Ra]

[R2, Re]

(B, Rs]

[R1, Re

[H5., R5] [Rh R1]

[B. Rs] [B.Ri]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
o [Rs, As]
R4/' \Re [R4~ R3] *

T T (Rs, Ra) *

~_ .

(R, Rs] o e [B R
[Rs, Rs]
[B, Rs] ° [B, Ri]
(B, B
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
/’RB\ [Rs, Rs]
Ry Ry [R4. R3] b [Rg. R3]

T T [R4= R4] ) ’ [/:?27 Rz]
H5\ /H1 ) )
[R5, R4] @ [B, Rs] o [Ri, R
[As, As] [Ry, Ri]
[B, Rs] ° [B, Ri]
(B, B]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
fo [R3~, R3]
R4/ \Ffe [Rs, Rs] . [Rz, R

T T [Ra, Ra] ) ’ [Rz, R2]
Rs Ry ° °
\~B'/

[Rs, Ra] o (B, Rl e [Ri, R

[Rs, Rs] [Ri, Ri]

[B= H5] ° [ ) R1]
(B, B]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
3y [Rs, Rs)
H4/ \Hz [Ra, Rs] ¢

Rs G N
.
[Rs,Rs] @ [B,
[/:1’57’?5].
(B, Rs] .

[B. B]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
/’RB\ [Rs, Rs]
Ry Ry [R4. R3] b [Rg. R3]

T T [R4= R4] ) ’ [/:?27 Rz]
H5\ /H1 ) )
[R5, R4] @ [B, Rs] o [Ri, R
[As, As] [Ry, Ri]
[B, Rs] ° [B, Ri]
(B, B]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
o [Rs Rs]
m/ \Re [Ra, R3 [Rz, Rs)

T T [Ra, Ra] /’ / \ [Re, Re]

Rs Ry °
., T
[Rs, Ra] T e [B, Rs] [R1, Ro]

\ / [R17R1

[B, Ri]

A\

o —e— e

[Rs, Rs] \

(B, Rs]

E/\

@

]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Cover Relations

Proposition (D., Hohlweg, McConville, Pilaud, *18+)

ForF,Ge %4 if

1. F< GinFW(A, B) F R E
3 2
2. |dim(F) — dim(G)| = 1 R
Ri A~ N, R
3. FCGorGCF T \ / T
then F < G. £ o L
Fa Rs Fz I \ I
R4 Rz RS ‘\. ./ R1
Fa Fi N
Rs Ry B
i/ ™ \Fo

A. Dermenjian (UQAM) The facial weak order in hyperplane arrangements



Facial Intervals
Facial Weak Order All the definitions!
Lattice

Covectors
m covector - a vector in {—, 0, +}* with signs relative to
hyperplanes.
m £ C{—,0 +}"- setof covectors

Fa < (+,0,—)  Fa(Hi)=+; Fa(Hz2) =0; Fa(Hs) = —
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Covectors
m covector - a vector in {—, 0, +}A with signs relative to
hyperplanes.
m £ C{—,0, +}"- set of covectors

F4H(+,O,—) F4(H1)I+; F4(H2)IO; F4(H3):—
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Covector Definition

For X,Y e L:

X<, Yo YH) <XH) with— <0<+
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Zonotopes
m Zonotope Z, is the convex polytope:

k
Zy = {v eV|v= ZA/e,-, such that |\;| < 1 for all i}
i=1

Theorem (Edelman 84, McMullen *71)

There is a bijection between .% 4 and the nonempty faces of Z,
given by the map

T(F):{VE V]iv= Z A€ + Z uje,}

F(H;)=0 F(H;)#0
where |\;| < 1 for all i and p; = F(H))
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Zonotope - Construction example

Hz
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Root inversion sets
m roots ® 4 = {tey,+en,...,tex}

m root inversion set
R(F) ={ecd4| (x,e) <0forsome x € F}.
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Equivalent definitions

Theorem (D., Hohlweg, McConville, Pilaud ’18+)

For F, G € %4 the following are equivalent:
B Mg <4 mg and Mg <4 Mg in poset of regions (%, B, < 4).
m There exists a chain of covers in FW(A, B) such that

F=Fi<Fkh< - -<F=G

m F <, G interms of covectors (G(H

)< F(H)YHe A)
= R(F)\R(G) C ¢ and R(G)\R(F) C %,
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Equivalence for type A, Coxeter arrangement
R —ey 2 _e
RN IR F"sg/, ,\%F"z Rl ;P\ O * 1
T Maega MNONY 29 NN o ¥ e
Rse M . ° § ° '\ . a )
5 T T T T _
(A5, Aylo S DN o S e ClrEne c oy
mE <4 mg T T T T TRG\R(F) C o7
vrsabe o ogde /o N\ Atnr S0/ N\ 0P
5, Hsl‘\ /15 Ail e
I
Ry (= =)
/'. Fs 0, —, — .{*«,* 0)

F<G

F3 K s
= Ry A SR (o N NGNS
FC GorGCF ° [
dim F — dim G| = 1 \/ ) \/ T GH) < F(H)vHe A
,0, ¢ .0,
T
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud *18+)

The facial weak order FW(A, B) is a lattice when A is simplicial.

Corollary (D., Hohlweg, McConville, Pilaud ’18+)

The lattice of regions is a sublattice of the facial weak order
lattice when A is simplicial.
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Example: B; Coxeter arrangement




Properties
Properties

Properties of the facial weak order

Theorem (D., Hohlweg, McConville, Pilaud '18+)

m FW(A, B) is self-dual.

m A simplicial implies FW(.A, B) is semi-distributive.

m A simplicial and X € %4 then X is join-irreducible in
FW(A, B) if and only if Mx is join-irreducible in (%, B, < 4)
and codim(X) € {0, 1}

m Mébius function: X, Y € 4 letZ=XnNY.

(—1)kXO+kY) jfX<Z<YandZ=X_ynY
0 otherwise

WX, Y) = {
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Properties

Properties

Thank you!
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