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Outline

m Arranging hyperplanes.

m The facial weak order and its 4, 2, 3, 4 (!) definitions.

m Yeah, but is it a lattice?

m Some other properties.
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Hyperplanes

m (V, (")) - n-dim real Euclidean vector space.
m A hyperplane H; is codim 1 subspace of V with normal e;.

Example
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Arrangements

m A hyperplane arrangementis A = {Hy, Ha, ..., Hk}.
m Ais centralif {0} C N A.
m Central A is essential if {0} =N A.

Example
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Arrangements

m Regions % - connected components of V without A.
m fFaces .7 4 - intersections of closures of some regions.

Hi
F3

Ry

Fa Fi

H,

Rs

Fs
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - (Partial) Orders
m Lattice - poset where every two elements have a meet
(greatest lower bound) and join (least upper bound).

The lattice (N, |) where a< b < a|b.
m meet - greatest common divisor
m join - least common multiple
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m Base region B € % - some fixed region

m Separation set for R € #
S(R) ={H € A| H separates R from B}

Hi Hs
Rs
R4 R
Ho
Rs Ry
B
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m Base region B € % - some fixed region

m Separation set for R € #
S(R) ={H € A| H separates R from B}

H; Hs
Rs
R4 R
h /
Rs Ry
B
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m Base region B € % - some fixed region

m Separation set for R € #
S(R) ={H € A| H separates R from B}

H;

Ra

H.

Rs
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m Base region B € % - some fixed region

m Separation set for R € #
S(R) ={H € A| H separates R from B}

H, Hs
A
{H:, H3} {Hi, Hz}
H,
{Ha} {H:}
)
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m Base region B € % - some fixed region

m Separation set for R € #
S(R) ={H € A| H separates R from B}

m Poset of Regions (%, B, < 1) where
R <4 R < S(R) C S(R) Hy

H.
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions
m A region R is simplicial if normal vectors for boundary
hyperplanes are linearly independent.
m A is simplicial if all Z simplicial.

Example
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions

Theorem (Bjérner, Edelman, Zieglar '90)

If A is simplicial then (%, B, < ) is a lattice for any B € %. If
(Z2,B, <) is a lattice then B is simplicial.

Example
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Background Hyperplane Arrangements
Poset of Regions
Motivation

History and Background - Poset of regions

Theorem (Bjérner, Edelman, Zieglar '90)

If A is simplicial then (%, B, < ) is a lattice for any B € %. If
(Z2,B, <) is a lattice then B is simplicial.

Example
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Background Hyperplane Arrangements
Poset of Regions
Motivation

Coxeter Arrangements

A Coxeter arrangement is the hyerplane arrangement
associated to a Coxeter group.

Coxeter Groups Hyperplane Arrangements

Reflecting hyperplanes <> Hyperplane arrangement

Root system <> Normals to hyperplanes

Inversion sets «+» Seperation sets
“~

Weak order Poset of regions
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Background Hyperplane Arrangements
Poset of Regions
Motivation

Motivation

m In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order of Coxeter groups to an order on all the
faces of its associated arrangement for type A.

m In 2006, Palacios and Ronco extended this new order to
Coxeter groups of all types using cover relations.

m In 2016, D, Hohlweg and Pilaud showed this extension has
a global equivalent and produces a lattice in Coxeter
arrangements.
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Background Hyperplane Arrangements
Poset of Regions
Motivation

Motivation

m In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order of Coxeter groups to an order on all the
faces of its associated arrangement for type A.

m In 2006, Palacios and Ronco extended this new order to
Coxeter groups of all types using cover relations.

m In 2016, D, Hohlweg and Pilaud showed this extension has
a global equivalent and produces a lattice in Coxeter
arrangements.

m Questions: Can we extend this to hyperplane
arrangements? Can we find both local and global
definitions? When do we actually get a lattice?
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Intervals
Proposition (Bjoérner, Las Vergas, Sturmfels, White, Ziegler '93)

Let A be central with base region B. For every F € % 4 there is
a unique interval [mg, Mg in (%, B, <) such that
[me,Me] = {Re | FCRJ

H; Hs

R\ p /F
F e o
H, 4 0 1

Rs R,

s/ B \F

A. Dermenjian (UQAM) The facial weak order in hyperplane arrangements



Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order

Let A be a central hyperplane arrangement and B a base
region in Z.

Definition
The facial weak order is the order FW(.A, B) on .% 4 where for
F,Ge Z:

F< G mep <4 mgand Mg <4 Mg

A. Dermenjian (UQAM) The facial weak order in hyperplane arrangements



Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
R
H4/ \Hz [Ry, Rs] [Re, Rs]

L]

Rs Ry
\8/ [Rs, Rd]

[As, Ra]

[R2, Re]

(B, Rs]

[R1, Re

[H5., R5] [Rh R1]

[B. Rs] [B.Ri]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
o [Rs, As]
R4/' \Re [R4~ R3] *

T T (Rs, Ra) *

~_ .

(R, Rs] o e [B R
[Rs, Rs]
[B, Rs] ° [B, Ri]
(B, B
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
/’RB\ [Rs, Rs]
Ry Ry [R4. R3] b [Rg. R3]

T T [R4= R4] ) ’ [/:?27 Rz]
H5\ /H1 ) )
[R5, R4] @ [B, Rs] o [Ri, R
[As, As] [Ry, Ri]
[B, Rs] ° [B, Ri]
(B, B]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
fo [R3~, R3]
R4/ \Ffe [Rs, Rs] . [Rz, R

T T [Ra, Ra] ) ’ [Rz, R2]
Rs Ry ° °
\~B'/

[Rs, Ra] o (B, Rl e [Ri, R

[Rs, Rs] [Ri, Ri]

[B= H5] ° [ ) R1]
(B, B]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
3y [Rs, Rs)
H4/ \Hz [Ra, Rs] ¢

Rs G N
.
[Rs,Rs] @ [B,
[/:1’57’?5].
(B, Rs] .

[B. B]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
/’RB\ [Rs, Rs]
Ry Ry [R4. R3] b [Rg. R3]

T T [R4= R4] ) ’ [/:?27 Rz]
H5\ /H1 ) )
[R5, R4] @ [B, Rs] o [Ri, R
[As, As] [Ry, Ri]
[B, Rs] ° [B, Ri]
(B, B]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial Weak Order - Example
o [Rs Rs]
m/ \Re [Ra, R3 [Rz, Rs)

T T [Ra, Ra] /’ / \ [Re, Re]

Rs Ry °
., T
[Rs, Ra] T e [B, Rs] [R1, Ro]

\ / [R17R1

[B, Ri]

A\

o —e— e

[Rs, Rs] \

(B, Rs]

E/\

@

]
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Cover Relations

Proposition (D., Hohlweg, McConville, Pilaud, *18+)

ForF,Ge %4 if

1. F< GinFW(A, B) F R E
3 2
2. |dim(F) — dim(G)| = 1 R
Ri A~ N, R
3. FCGorGCF T \ / T
then F < G. £ o L
Fa Rs Fz I \ I
R4 Rz RS ‘\. ./ R1
Fa Fi N
Rs Ry B
i/ ™ \Fo
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Covectors
m covector - a vector in {—, 0, +}* with signs relative to
hyperplanes.
m £ C{—,0 +}"- setof covectors

Fa < (+,0,—)  Fa(Hi)=+; Fa(Hz2) =0; Fa(Hs) = —
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Covectors
m covector - a vector in {—, 0, +}A with signs relative to
hyperplanes.
m £ C{—,0, +}"- set of covectors

F4H(+,O,—) F4(H1)I+; F4(H2)IO; F4(H3):—
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Covector operations
ForX,Y e £ C{-,0,+}"

m Composition: (X o Y)(H)

Y(H) if X(H)=0

{X(H) otherwise

{ X(H) ifY(H)=0
)

m Reorientation: (X_y) (H) X(H otherwise

* For F € 4, [mg, Mg] = [F o B,Fo—B]|

Let A = {H1,H2, Hs, Hy, H5}
X:(_)07+)+70) Y:(0707_707+)

Then
XOYZ(_a07+7+7+) X—Y:(+707+a_70)

A. Dermenjian (UQAM) The facial weak order in hyperplane arrangements



Facial Intervals
Facial Weak Order All the definitions!
Lattice

Covector Definition

For X,Y e L:

X<, Yo YH) <XH) YHwith — <0< +
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Zonotopes
m Zonotope Z, is the convex polytope:

k
Zy = {v eV|v= ZA/e,-, such that |\;| < 1 for all i}
i=1

Theorem (Edelman 84, McMullen *71)

There is a bijection between .% 4 and the nonempty faces of Z,
given by the map

T(F):{VE V]iv= Z A€ + Z uje,}

F(H;)=0 F(H;)#0
where |\;| < 1 for all i and p; = F(H))

A. Dermenjian (UQAM) The facial weak order in hyperplane arrangements



Facial Intervals
Facial Weak Order All the definitions!
Lattice

Zonotope - Construction example

H, Rs Hs

R R
L F1
Rs Ry
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Zonotope - Construction example
H, Rs Hs
Ra

Fs
H.
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Zonotope - Construction example

H, Rs Hs

Ra

Fs

H.
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Zonotope - Construction example
H, Rs Hs
Ra

Fs
H.
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Zonotope - Construction example

H, Rs Hs

R Ry
Fs
Hz
Rs R
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Zonotope - Construction example

Hz

A. Dermenjian (UQAM) The facial weak order in hyperplane arrangements



Facial Intervals
Facial Weak Order All the definitions!
Lattice

Root inversion sets
m roots ® 4 = {tey,+en,...,tex}

m root inversion set
R(F) ={ecd4| (x,e) <0forsome x € F}.
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Equivalent definitions

Theorem (D., Hohlweg, McConville, Pilaud ’18+)

For F, G € %4 the following are equivalent:
B Mg <4 mg and Mg <4 Mg in poset of regions (%, B, < 4).
m There exists a chain of covers in FW(A, B) such that

F=Fi<Fkh< - -<F=G

m F <, G interms of covectors (G(H

)< F(H)YHe A)
= R(F)\R(G) C ¢ and R(G)\R(F) C %,
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Equivalence for type A, Coxeter arrangement
Fs (A3, As] T —e3 .2 -
[ ] [ ]
B [m,m.]/r \\[fz,ﬂzl ﬁ'/ ,\ ‘\°>i o g e
5 T T T T -
(Rs, A olB. A5l @F. Ayl IQ- o oﬁﬂ(F)\n(G)@A
me <4 mg T T T T TR(G\R(F) C o7,
- A N L A Wt
5, Hsl‘\ /15 Al NS
N
Fa /,'13,\ Fa 0.5 ;\(\1),7.0)
F<G ° ° ° [
FgGorGgFH4o/' No =g Ne =P
ldimF —dimGl =1 T T T GH) < F(H)vH e A
° o F (+,0, —® ¢0,0,0) &—.0,+)
T ) T /'\ T
° ° Ry (+ +.3)\. A=, +,+)
(+,+, 0 07, +, +)
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Equivalence for type A, Coxeter arrangement

R Rs, R ey 2

/?” 3&% (R B Sb,i%ﬂzﬂsl 4‘\\ ® * “
[ ] [ ]

Fse [H4«,Ff'4.] /\ \[.F‘,Z$H2] S. ‘\.a e & e

5 T T T T B

(Rs, A olB. A5l @F. Ayl IQ . o e >IR(F)\H(G) cog
me <4 mg T T T T TR(G\R(F) C o7,
R LN LN «J
(8. 75T o 1B ] e
% <
,0)
F<G

— =)
.

T GH) < F(H)vH e A
¢ .0 +)

R4
FC GorGCF °

ldimF —dimGl =1 T
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Equivalence for type A, Coxeter arrangement

R Rs, R ey 2

/?” 3&% (R B Sb,i%ﬂzﬂsl 4‘\\ ® * “
[ ] [ ]

Fse [H4«,Ff'4.] /\ \[.F‘,Z$H2] S. ‘\.a e & e

5 T T T T B

(Rs, A olB. A5l @F. Ayl IQ . o e >IR(F)\R(G) cog
me <4 mg T T T T TR(G\R(F) C o7,
SN LN Boml Sos -J
(8. 75T o 1B ] e
% <
,0)
F<G

— =)
.

T GH) < F(H)vH e A
¢ .0 +)

R4
FC GorGCF °

ldimF —dimGl =1 T
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Equivalence for type A, Coxeter arrangement
R Rs, R T PG

(Rs, Rs] e
a7 N (Ra, Ra) 3.&9233] . * 1
I Tiaesy NN g e
s 5 [} / ° § .
5 T T T

Sely
[":1’5~H4$ o(B, 3] ?%Fle IQ' S % § F)Y‘R(Fé é

eo—ee—e

mg <4 Mg T
Ve <4 Me [Rs, F’s]'\ [.RMHW] %.‘\.
(B, Hsr\ 5131] ‘\o
I
,0)
F<G

— =)
[ ]

T G(H) < F(H)VH € A
®—.0,+)

R4
FC GorGCF °

ldimF —dimGl =1 T
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Equivalence for type A, Coxeter arrangement

R Rs, R ey 2

/?” 3&% (R B Sb,i%ﬂzﬂsl 4‘\\ ® * “
[ ] [ ]

Fse [H4«,Ff'4.] /\ \[.F‘,Z$H2] S. ‘\.a e & e

5 T T T T B

(Rs, A olB. A5l @F. Ayl IQ . o e >IR(F)\H(G) cog
me <4 mg T T T T TR(G\R(F) C o7,
R LN LN «J
(8. 75T o 1B ] e
% <
,0)
F<G

— =)
.

T GH) <FH)vHe A
¢ .0 +)

R4
FC GorGCF °

ldimF —dimGl =1 T
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Equivalence for type A, Coxeter arrangement

R Rs, R ey 2

/?” 3&% (R B Sb,i%ﬂzﬂsl 4‘\\ ® * “
[ ] [ ]

Fse [H4«,Ff'4.] /\ \[.F‘,Z$H2] S. ‘\.a e & e

5 T T T T B

(Rs, A olB. A5l @F. Ayl IQ . o e >IR(F)\H(G) cog
me <4 mg T T T T TR(G\R(F) C o7,
R LN LN «J
(8. 75T o 1B ] e
% <
,0)
F<@G

— =)
.

T GH) < F(H)vH e A
¢ .0 +)

R4
FCGorGCF °

ldimF —dimGl =1 T
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Equivalence for type A, Coxeter arrangement

—e
Fae [Fa Fa] “T> —e3 —e

Ro  [Aa Pl ® R, Aol e *
As o ,;I: [H4«,Ff'4.] /\.‘\[.F"zs’?z] S. o< e o B

°2
[":"5~H4I o[, Ryl Imﬂgl IQI o % I}IR(F)\R(G)QG’;
T T I§R c el

mg <4 mg T (G)\R(F)
SN LN Boml Sos
~
(. AT o 15, ] .
(5. 58] NS
,0)
F<G

— =)
.

T GH) < F(H)vH e A
¢ .0 +)

R4
FC GorGCF °

ldimF —dimGl =1 T
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Equivalence for type A, Coxeter arrangement

[Rs

, R3]
/? Ro (R, Bl @  [Re: Fo] e *
[ ] [ ]

e B / N Neb e ®
5 T T T T

[Rs. Ryle o[B, il &R, Ryl IQ- o % oﬁﬂ(F)\F«G)@;
1 1 T RoNwe € o]

o

mg <4 Mg T (G)\R(F)
R LN LN
~
(. AT o 1B ] .
(5. 58] NS
,0)
F<G

— =)
.

T GH) < F(H)vH e A
¢ .0 +)

R4
FC GorGCF °

ldimF —dimGl =1 T
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud *18+)

The facial weak order FW(A, B) is a lattice when A is simplicial.

Corollary (D., Hohlweg, McConville, Pilaud ’18+)

The lattice of regions is a sublattice of the facial weak order
lattice when A is simplicial.
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

Lattice proof - Joins

Proof uses two key components :

Lemma (Bjorner, Edelman, Zieglar *90)

1: If L is a finite, bounded poset such that x \V y exists whenever
x and y both cover some z € L, then L is a lattice.

2: Cover relation: Z < X iff Z < X, |dim X —dimZ| =1 and
XCZorZCX. ThenZ < X and Z < Y gives three cases:

1. XuYC ZanddimX =dimY =dimZ — 1,
2. ZCcXNnYanddmX =dimY =dimZ+ 1, and
3.XCZCVYanddimX=dmZ—-1=dmY - 2.
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

XuYCZanddimX =dimY =dimZ — 1

Ho
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

XuYCZanddimX =dimY =dimZ — 1

Ho
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

ZCXNnYanddmX=dmY =dimZ + 1

Ho
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Facial Weak Order All the definitions!
Lattice

ZCXNnYanddmX=dmY =dimZ + 1

Ho
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

XCZCYanddmX=dmZ—-1=dmY -2

Ho
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XCZCYanddmX=dmZ—-1=dmY -2

Ho
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XCZCYanddmX=dmZ—-1=dmY -2

Ho
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Facial Intervals
Facial Weak Order All the definitions!
Lattice

XCZCYanddmX=dmZ—-1=dmY -2

Ho
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Example: B; Coxeter arrangement




Properties
. Further Works
Properties

Properties of the facial weak order

m The dual of a poset P is the poset P°? where x < y in P iff
y < xin P°. A poset is self-dual if P = P°P.

m A lattice is semi-distributive if x V y = x vV z implies
xVy=xV(yAZz)and similarly for the meets.

Theorem (D., Hohlweg, McConville, Pilaud *18+)

The facial weak order FW(A, B) is self-dual. If furthermore, A is
simplicial, FW(A, B) is a semi-distributive lattice.
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Properties
. Further Works
Properties

Join-irreducible elements

m An element is join-irreducible if and only if it covers exactly
one element.

Proposition (D., Hohlweg, McConville, Pilaud ’18+)

If A is simplicial and F a face with facial interval [mg, Mg]. Then
F is join-irreducible in FW(A, B) if and only if MF is
join-irreducible in (%, B, < 4) and codim(F) € {0,1}
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Properties
. Further Works
Properties

Mobius function

Recall that the Mdbius function is given by:

1 ifx=y
w(X.¥) = = Xxczey (x,2) ifx<y
0 otherwise

Proposition (D., Hohlweg, McConville, Pilaud *18+)

Let X and Y be faces suchthat X < Y andletZ=XnNnY.

(x.y) = IO X< Z <Y andZ=X 7Y
A= 0 otherwise

A. Dermenjian (UQAM) The facial weak order in hyperplane arrangements
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Further Works

m Can we explicitly state the join/meet of two elements?

m When is the facial weak order congruence uniform?

m Can we generalize this to polytopes?
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Thank you!
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