The facial weak order in hyperplane arrangements

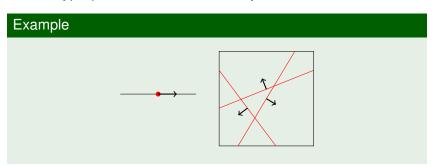
Aram Dermenjian^{1,3}

Christophe Hohlweg¹, Thomas McConville² and Vincent Pilaud³

¹Université du Québec à Montréal (UQAM) ²Mathematical Sciences Research Institute (MSRI) ³École Polytechnique (LIX)

22 April 2019

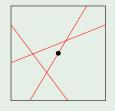
On this day in 1811 Otto Hesse was born.

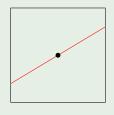


Outline

- Arranging hyperplanes.
- The facial weak order and its 1, 2, 3, 4 (!) definitions.
- Yeah, but is it a lattice?
- Some other properties.

History and Background - Hyperplanes

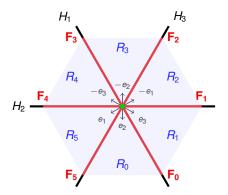

- $(V, \langle \cdot, \cdot \rangle)$ *n*-dim real Euclidean vector space.
- A *hyperplane* H_i is codim 1 subspace of V with normal e_i .



History and Background - Arrangements

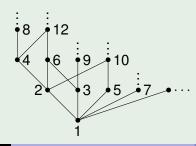
- A hyperplane arrangement is $A = \{H_1, H_2, ..., H_k\}$.
- \mathcal{A} is *central* if $\{0\} \subseteq \bigcap \mathcal{A}$.
- Central \mathcal{A} is *essential* if $\{0\} = \bigcap \mathcal{A}$.

Example

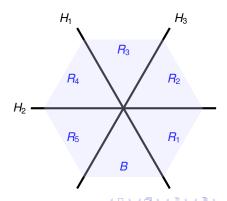


History and Background - Arrangements

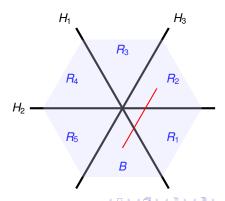
- **Regions** \mathcal{R} connected components of V without \mathcal{A} .
- **Faces** $\mathscr{F}_{\mathcal{A}}$ intersections of closures of some regions.

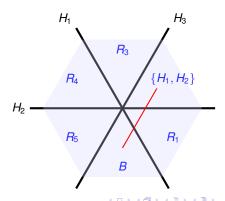

History and Background - (Partial) Orders

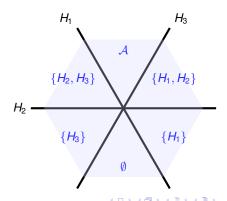
Lattice - poset where every two elements have a meet (greatest lower bound) and join (least upper bound).

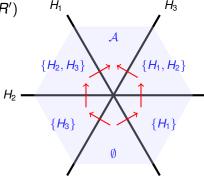

Example

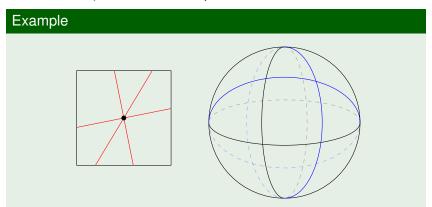
The lattice $(\mathbb{N}, |)$ where $a \leq b \Leftrightarrow a | b$.


- meet greatest common divisor
- join least common multiple

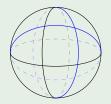

- Base region $B \in \mathcal{R}$ some fixed region
- Separation set for $R \in \mathcal{R}$ $S(R) := \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$

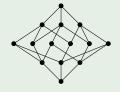

- Base region $B \in \mathcal{R}$ some fixed region
- Separation set for $R \in \mathcal{R}$ $S(R) := \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$


- Base region $B \in \mathcal{R}$ some fixed region
- Separation set for $R \in \mathcal{R}$ $S(R) := \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$


- Base region $B \in \mathcal{R}$ some fixed region
- Separation set for $R \in \mathcal{R}$ $S(R) := \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$

- Base region $B \in \mathcal{R}$ some fixed region
- Separation set for $R \in \mathcal{R}$ $S(R) := \{H \in \mathcal{A} \mid H \text{ separates } R \text{ from } B\}$
- Poset of Regions $(\mathcal{R}, B, \leq_{\mathcal{A}})$ where $R \leq_{\mathcal{A}} R' \Leftrightarrow S(R) \subseteq S(R')$

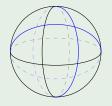

- A region R is simplicial if normal vectors for boundary hyperplanes are linearly independent.
- \blacksquare \mathcal{A} is *simplicial* if all \mathscr{R} simplicial.

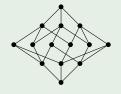


Theorem (Björner, Edelman, Zieglar '90)

If A is simplicial then $(\mathcal{R}, B, \leq_{\mathcal{A}})$ is a lattice for any $B \in \mathcal{R}$. If $(\mathcal{R}, B, \leq_{\mathcal{A}})$ is a lattice then B is simplicial.

Example





Theorem (Björner, Edelman, Zieglar '90)

If A is simplicial then $(\mathcal{R}, B, \leq_{\mathcal{A}})$ is a lattice for any $B \in \mathcal{R}$. If $(\mathcal{R}, B, \leq_{\mathcal{A}})$ is a lattice then B is simplicial.

Example

Coxeter Arrangements

Example

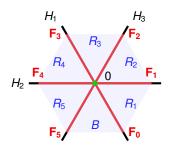
A *Coxeter arrangement* is the hyerplane arrangement associated to a Coxeter group.

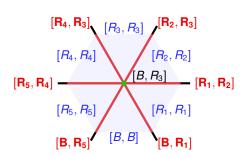
Coxeter Groups		Hyperplane Arrangements
Reflecting hyperplanes	\leftrightarrow	Hyperplane arrangement
Root system	\leftrightarrow	Normals to hyperplanes
Inversion sets	\leftrightarrow	Seperation sets
Weak order	\leftrightarrow	Poset of regions

Motivation

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order of Coxeter groups to an order on all the faces of its associated arrangement for type A.
- In 2006, Palacios and Ronco extended this new order to Coxeter groups of all types using cover relations.
- In 2016, D, Hohlweg and Pilaud showed this extension has a global equivalent and produces a lattice in Coxeter arrangements.

Motivation

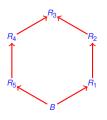

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order of Coxeter groups to an order on all the faces of its associated arrangement for type A.
- In 2006, Palacios and Ronco extended this new order to Coxeter groups of all types using cover relations.
- In 2016, D, Hohlweg and Pilaud showed this extension has a global equivalent and produces a lattice in Coxeter arrangements.
- Questions: Can we extend this to hyperplane arrangements? Can we find both local and global definitions? When do we actually get a lattice?

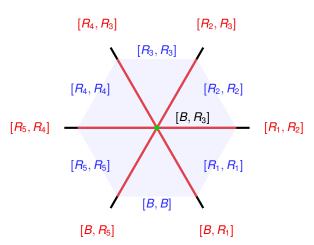


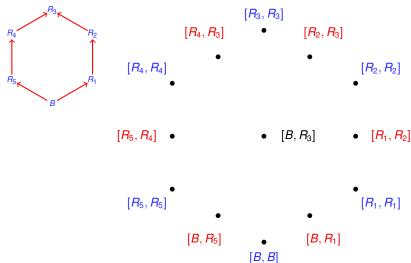
Facial Intervals

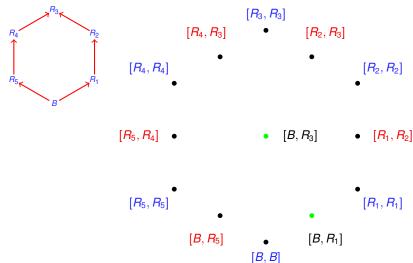
Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler '93)

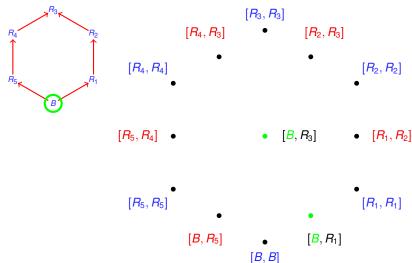
Let \mathcal{A} be central with base region B. For every $F \in \mathscr{F}_{\mathcal{A}}$ there is a unique interval $[m_F, M_F]$ in $(\mathscr{R}, B, \leq_{\mathcal{A}})$ such that $[m_F, M_F] = \left\{ R \in \mathscr{R} \mid F \subseteq \overline{R} \right\}$

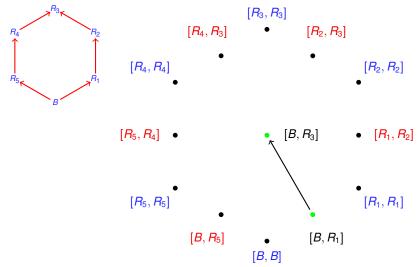

Facial Weak Order

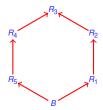

Let \mathcal{A} be a central hyperplane arrangement and \mathcal{B} a base region in \mathscr{R} .

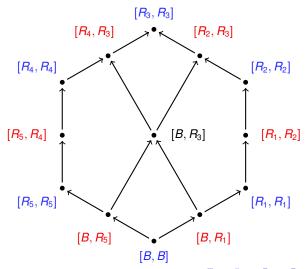

Definition

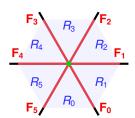

The *facial weak order* is the order FW(A, B) on \mathscr{F}_A where for $F, G \in \mathscr{F}$:

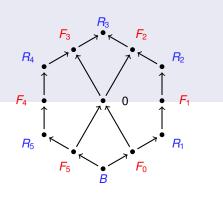

$$F \leq G \Leftrightarrow m_F \leq_{\mathcal{A}} m_G$$
 and $M_F \leq_{\mathcal{A}} M_G$







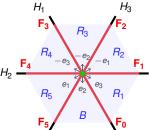



Cover Relations

Proposition (D., Hohlweg, McConville, Pilaud, '18+)

For $F, G \in \mathscr{F}_A$ if

- 1. $F \leq G$ in FW(A, B)
- 2. $|\dim(F) \dim(G)| = 1$
- 3. $F \subseteq G$ or $G \subseteq F$ then $F \lessdot G$.



Covectors

- **covector** a vector in $\{-,0,+\}^{\mathcal{A}}$ with signs relative to hyperplanes.
- $\mathcal{L} \subseteq \{-,0,+\}^{\mathcal{A}}$ set of covectors

Example

$$F_4 \leftrightarrow (+,0,-)$$
 $F_4(H_1) = +; F_4(H_2) = 0; F_4(H_3) = -$

Covectors

- **covector** a vector in $\{-,0,+\}^{\mathcal{A}}$ with signs relative to hyperplanes.
- $\mathcal{L} \subseteq \{-,0,+\}^{\mathcal{A}}$ set of covectors

Example

$$F_4 \leftrightarrow (+,0,-)$$
 $F_4(H_1) = +; F_4(H_2) = 0; F_4(H_3) = -$

$$\begin{array}{c}
H_{1} \\
(0,-,-) \\
(+,-,-) \\
(+,-,-) \\
H_{2} \\
(+,+,-) \\
(+,+,-) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+,+,+) \\
(+$$

Covector operations

For
$$X, Y \in \mathcal{L} \subseteq \{-, 0, +\}^{\mathcal{A}}$$

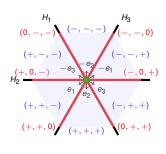
- Composition: $(X \circ Y)(H) = \begin{cases} Y(H) & \text{if } X(H) = 0 \\ X(H) & \text{otherwise} \end{cases}$
- Reorientation: $(X_{-Y})(H) = \begin{cases} -X(H) & \text{if } Y(H) = 0 \\ X(H) & \text{otherwise} \end{cases}$
- \star For $F \in \mathscr{F}_{\mathcal{A}}$, $[m_F, M_F] = [F \circ B, F \circ -B]$

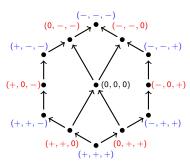
Example

Let
$$A = \{H_1, H_2, H_3, H_4, H_5\}.$$

$$X = (-, 0, +, +, 0)$$
 $Y = (0, 0, -, 0, +)$

Then


$$X \circ Y = (-,0,+,+,+)$$
 $X_{-Y} = (+,0,+,-,0)$

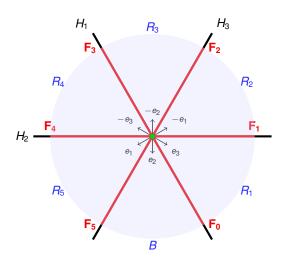

Covector Definition

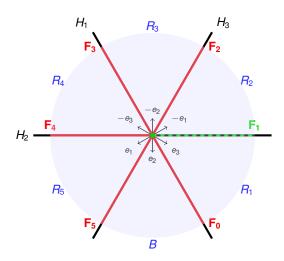
Definition

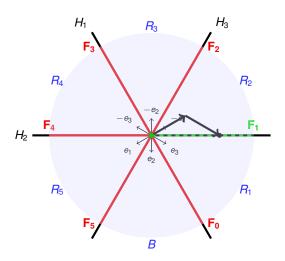
For $X, Y \in \mathcal{L}$:

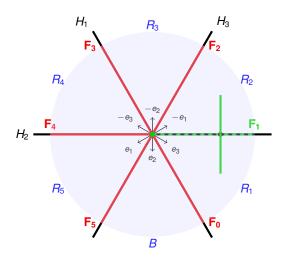
$$X \leq_{\mathcal{L}} Y \Leftrightarrow Y(H) \leq X(H) \quad \forall H \text{ with } -<0<+$$

Zonotopes

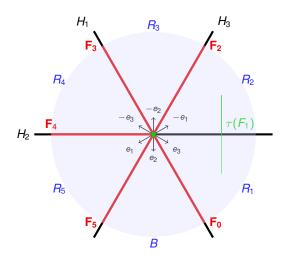

Zonotope Z_A is the convex polytope:


$$Z_{\mathcal{A}} \coloneqq \left\{ v \in V \mid v = \sum_{i=1}^k \lambda_i e_i, \text{ such that } |\lambda_i| \le 1 \text{ for all } i \right\}$$


Theorem (Edelman '84, McMullen '71)

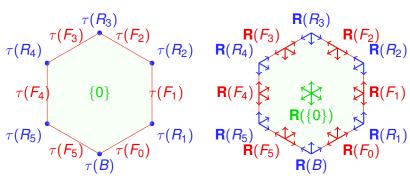

There is a bijection between $\mathscr{F}_{\mathcal{A}}$ and the nonempty faces of $Z_{\mathcal{A}}$ given by the map

$$\tau(F) = \left\{ v \in V \mid v = \sum_{F(H_i)=0} \lambda_i e_i + \sum_{F(H_j) \neq 0} \mu_j e_j \right\}$$
where $|\lambda_i| \le 1$ for all i and $\mu_i = F(H_i)$





Zonotope - Construction example

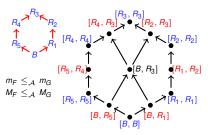


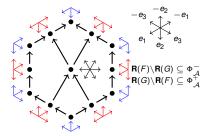
Zonotope - Construction example

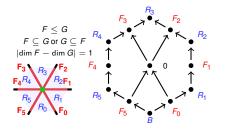
Root inversion sets

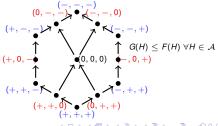
- lacksquare roots $\Phi_{\mathcal{A}} \coloneqq \{\pm e_1, \pm e_2, \dots, \pm e_k\}$
- root inversion set $\mathbf{R}(F) := \{e \in \Phi_{\mathcal{A}} \mid \langle x, e \rangle \leq 0 \text{ for some } x \in F\}.$

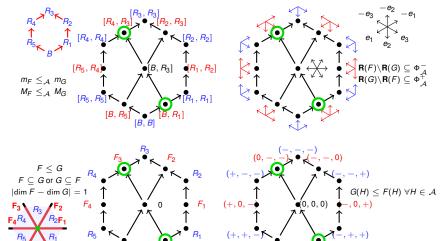
Equivalent definitions

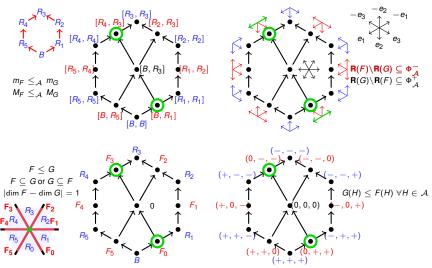

Theorem (D., Hohlweg, McConville, Pilaud '18+)

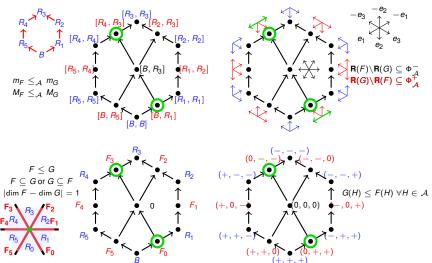

For $F, G \in \mathscr{F}_A$ the following are equivalent:

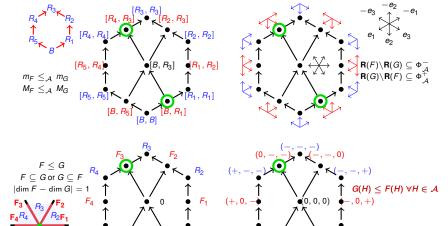

- $m_F \leq_{\mathcal{A}} m_G$ and $M_F \leq_{\mathcal{A}} M_G$ in poset of regions $(\mathscr{R}, B, \leq_{\mathcal{A}})$.
- There exists a chain of covers in FW(A, B) such that

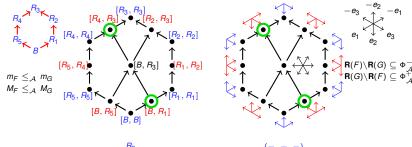

$$F = F_1 \lessdot F_2 \lessdot \cdots \lessdot F_n = G$$

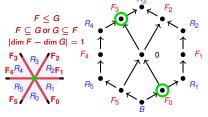

- $F \leq_{\mathcal{L}} G$ in terms of covectors $(G(H) \leq F(H) \ \forall H \in \mathcal{A})$
- $\mathbf{R}(F)\backslash\mathbf{R}(G)\subseteq\Phi_{\mathcal{A}}^{-}$ and $\mathbf{R}(G)\backslash\mathbf{R}(F)\subseteq\Phi_{\mathcal{A}}^{+}$.

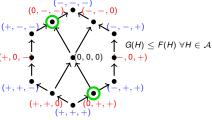


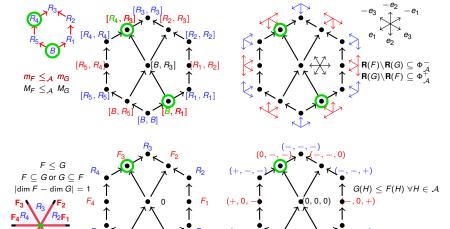


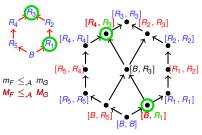


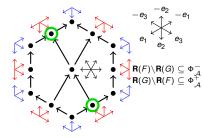


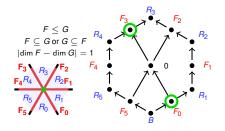


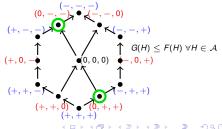












Facial weak order lattice

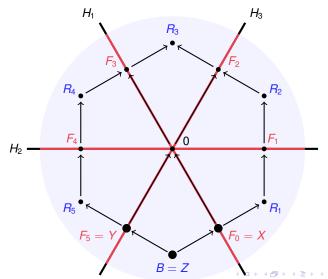
Theorem (D., Hohlweg, McConville, Pilaud '18+)

The facial weak order FW(A, B) is a lattice when A is simplicial.

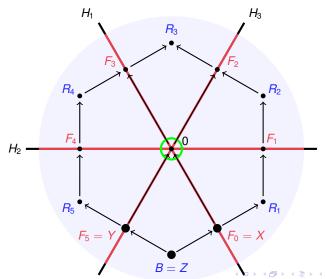
Corollary (D., Hohlweg, McConville, Pilaud '18+)

The lattice of regions is a sublattice of the facial weak order lattice when A is simplicial.

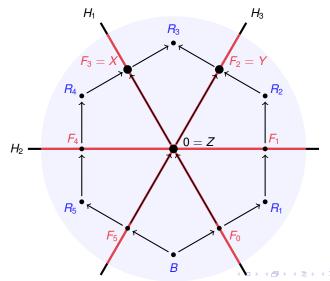
Lattice proof - Joins

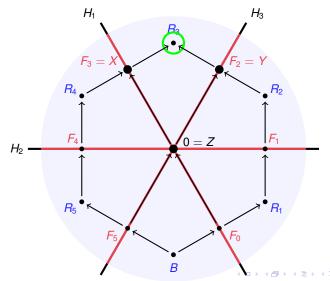

Proof uses two key components:

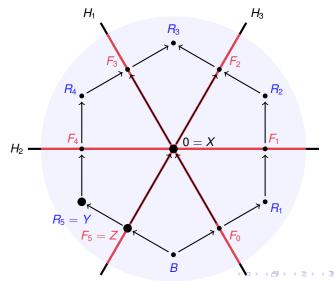
Lemma (Björner, Edelman, Zieglar '90)

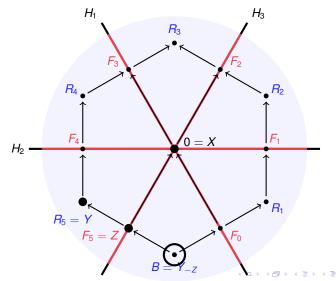

1: If L is a finite, bounded poset such that $x \lor y$ exists whenever x and y both cover some $z \in L$, then L is a lattice.

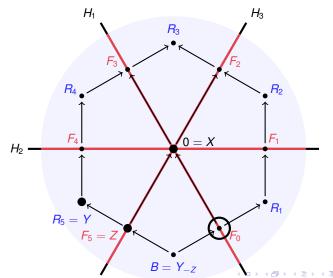
- 2: Cover relation: $Z \lessdot X$ iff $Z \leq X$, $|\dim X \dim Z| = 1$ and $X \subseteq Z$ or $Z \subseteq X$. Then $Z \lessdot X$ and $Z \lessdot Y$ gives three cases:
 - 1. $X \cup Y \subseteq Z$ and dim $X = \dim Y = \dim Z 1$,
 - 2. $Z \subseteq X \cap Y$ and dim $X = \dim Y = \dim Z + 1$, and
 - 3. $X \subseteq Z \subseteq Y$ and dim $X = \dim Z 1 = \dim Y 2$.

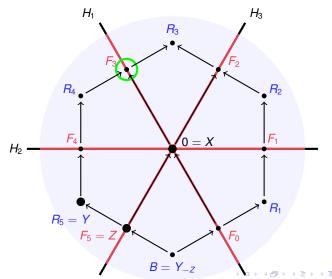

$X \cup Y \subseteq Z$ and dim $X = \dim Y = \dim Z - 1$

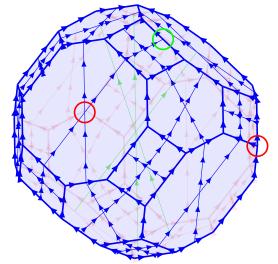

$X \cup Y \subseteq Z$ and dim $X = \dim Y = \dim Z - 1$




$Z \subseteq X \cap Y$ and dim $X = \dim Y = \dim Z + 1$




$Z \subseteq X \cap Y$ and dim $X = \dim Y = \dim Z + 1$



Example: B₃ Coxeter arrangement

Properties of the facial weak order

- The *dual* of a poset *P* is the poset P^{op} where $x \le y$ in *P* iff $y \le x$ in P^{op} . A poset is *self-dual* if $P \cong P^{op}$.
- A lattice is *semi-distributive* if $x \lor y = x \lor z$ implies $x \lor y = x \lor (y \land z)$ and similarly for the meets.

Theorem (D., Hohlweg, McConville, Pilaud '18+)

The facial weak order FW(A, B) is self-dual. If furthermore, A is simplicial, FW(A, B) is a semi-distributive lattice.

Join-irreducible elements

An element is join-irreducible if and only if it covers exactly one element.

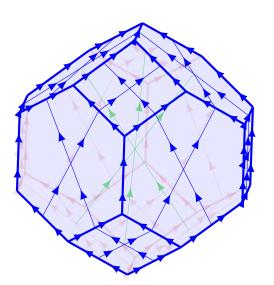
Proposition (D., Hohlweg, McConville, Pilaud '18+)

If $\mathcal A$ is simplicial and F a face with facial interval $[m_F, M_F]$. Then F is join-irreducible in $FW(\mathcal A, B)$ if and only if M_F is join-irreducible in $(\mathscr R, B, \leq_{\mathcal A})$ and $\operatorname{codim}(F) \in \{0, 1\}$

Möbius function

Recall that the Möbius function is given by:

$$\mu(x,y) = \begin{cases} 1 & \text{if } x = y \\ -\sum_{x \le z < y} \mu(x,z) & \text{if } x < y \\ 0 & \text{otherwise} \end{cases}$$


Proposition (D., Hohlweg, McConville, Pilaud '18+)

Let *X* and *Y* be faces such that $X \leq Y$ and let $Z = X \cap Y$.

$$\mu(X,Y) = \begin{cases} (-1)^{\operatorname{rk}(X) + \operatorname{rk}(Y)} & \text{if } X \leq Z \leq Y \text{ and } Z = X_{-Z} \cap Y \\ 0 & \text{otherwise} \end{cases}$$

Further Works

- Can we explicitly state the join/meet of two elements?
- When is the facial weak order congruence uniform?
- Can we generalize this to polytopes?

Thank you!