Facial Weak Order

Aram Dermenjian

Joint work with: Christophe Hohlweg (LACIM) and Vincent Pilaud (CNRS & LIX)

Université du Québec à Montréal

18 June 2017

■ Finite Coxeter System (W, S) such that

$$W := \langle s \in S \, | \, (s_i s_j)^{m_{i,j}} = e \text{ for } s_i, s_j \in S \rangle$$

where $m_{i,j} \in \mathbb{N}^*$ and $m_{i,j} = 1$ only if i = j.

■ A Coxeter diagram Γ_W for a Coxeter System (W, S) has S as a vertex set and an edge labelled $m_{i,j}$ when $m_{i,j} > 2$.

$$s_i m_{i,j}$$

$$W_{B_3} = \langle s_1, s_2, s_3 | s_1^2 = s_2^2 = s_3^2 = (s_1 s_2)^4 = (s_2 s_3)^3 = (s_1 s_3)^2 = e \rangle$$

$$\Gamma_{B_3} : \qquad \begin{matrix} \bullet \\ \hline s_1 & s_2 & s_3 \end{matrix}$$

■ Finite Coxeter System (W, S) such that

$$W := \langle s \in S \, | \, (s_i s_j)^{m_{i,j}} = e \text{ for } s_i, s_j \in S \rangle$$

where $m_{i,j} \in \mathbb{N}^*$ and $m_{i,j} = 1$ only if i = j.

■ A Coxeter diagram Γ_W for a Coxeter System (W, S) has S as a vertex set and an edge labelled $m_{i,j}$ when $m_{i,j} > 2$.

$$m_{i,j}$$
 s_i

Example

 $W_{A_n} = S_{n+1}$, symmetric group.

$$\Gamma_{A_n}$$
: S_1 S_2 S_3 S_{n-1} S_n

■ Finite Coxeter System (W, S) such that

$$W := \langle s \in S \mid (s_i s_j)^{m_{i,j}} = e \text{ for } s_i, s_j \in S \rangle$$

where $m_{i,j} \in \mathbb{N}^*$ and $m_{i,j} = 1$ only if i = j.

■ A Coxeter diagram Γ_W for a Coxeter System (W, S) has S as a vertex set and an edge labelled $m_{i,j}$ when $m_{i,j} > 2$.

$$s_i$$
 s_j

Example

 $W_{l_2(m)} = \mathcal{D}(m)$, dihedral group of order 2m.

$$\Gamma_{I_2(m)}: \frac{m}{s_1}$$

Let (W, S) be a Coxeter system.

■ Let $w \in W$ such that $w = s_1 \dots s_n$ for some $s_i \in S$. We say that w has *length* n, $\ell(w) = n$, if n is minimal.

Example

Let
$$\Gamma_{A_2}$$
: $\stackrel{s}{\bullet}$ $\stackrel{t}{\bullet}$. $\ell(stst) = 2$ as $stst = tstt = ts$.

■ Let the *(right) weak order* be the order on the Cayley graph where $\stackrel{W}{\bullet} \stackrel{WS}{\longrightarrow}$ and $\ell(w) <_R \ell(ws)$.

Theorem (Björner [1984])

Let (W, S) be a finite Coxeter system. The weak order is a lattice graded by length.

 For finite Coxeter systems, there exists a longest element in the weak order, w_0 .

Let
$$\Gamma_{A_2}: \stackrel{S}{\bullet} \stackrel{t}{\bullet}$$
.

$$sts = w_0 = tst$$
 ts
 ts
 ts
 ts
 ts
 ts
 ts

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers,
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice.
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - gave a local definition of this order using covers,
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice.
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Problems: Can we find a global definition for this poset, and is it a lattice?

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers,
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice. ✓
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Problems: Can we find a global definition for this poset, and is it a lattice?

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers,
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice. ✓
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Problems: Can we find a global definition for this poset, and is it a lattice?

Parabolic Subgroups

Let $I \subseteq S$.

- $W_I = \langle I \rangle$ is the *standard parabolic subgroup* with long element denoted $w_{\circ,I}$.
- $W^I := \{ w \in W \mid \ell(w) \leq \ell(ws), \text{ for all } s \in I \}$ is the set of minimal length coset representatives for W/W_I .
- Any element $w \in W$ admits a unique factorization $w = w^I \cdot w_I$ with $w^I \in W^I$ and $w_I \in W_I$.
- By convention in this talk xW_I means $x \in W^I$.
- Coxeter complex \mathcal{P}_W the abstract simplicial complex whose faces are all the standard parabolic cosets of W.

Facial Weak Order

Let (W, S) be a finite Coxeter system.

Definition (Krob et.al. [2001, type A], Palacios, Ronco [2006])

The *(right) facial weak order* is the order \leq_F on the Coxeter complex \mathcal{P}_W defined by cover relations of two types:

(1)
$$xW_I \lessdot xW_{I \cup \{s\}}$$
 if $s \notin I$ and $x \in W^{I \cup \{s\}}$,

$$(2) \qquad xW_{I} \lessdot xw_{\circ,I}w_{\circ,I \smallsetminus \{s\}}W_{I \smallsetminus \{s\}} \qquad \text{if } s \in I,$$

where $I \subseteq S$ and $x \in W^I$.

Facial weak order example

- (1) $xW_I \lessdot xW_{I \cup \{s\}}$ if $s \notin I$ and $x \in W^{I \cup \{s\}}$
- (2) $xW_I \lessdot xw_{\circ,I}w_{\circ,I \setminus \{s\}}W_{I \setminus \{s\}}$ if $s \in I$

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - lacksquare gave a local definition of this order using covers, $\ \checkmark$
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice. ✓
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Problems: Can we find a global definition for this poset, and is it a lattice?

Root System

- Let $(V, \langle \cdot, \cdot \rangle)$ be a real Euclidean space.
- Let W be a group generated by a set of reflections S. $W \hookrightarrow O(V)$ gives representation as a finite reflection group.
- The reflection associated to $\alpha \in V \setminus \{0\}$ is

$$s_{\alpha}(v) = v - \frac{2\langle v, \alpha \rangle}{||\alpha||^2} \alpha \quad (v \in V)$$

- A root system is $\Phi := \{\alpha \in V \mid s_{\alpha} \in W, ||\alpha|| = 1\}$
- We have $\Phi = \Phi^+ \sqcup \Phi^-$ decomposable into positive and negative roots.

$$W_{A_2} = \langle s, t \mid s^2 = t^2 = (st)^3 = e \rangle \quad \Gamma_{A_2} : \stackrel{s}{\bullet} \stackrel{t}{\longrightarrow}$$

$$W_{A_2} = \langle s, t \mid s^2 = t^2 = (st)^3 = e \rangle$$
 $\Gamma_{A_2} : \bullet \longrightarrow \bullet$
 $\mathsf{Perm}(W) = \{ w(x) \mid w \in W \}$

$$W_{A_2} = \langle s, t \mid s^2 = t^2 = (st)^3 = e \rangle$$
 $\Gamma_{A_2} : \bullet \longrightarrow \bullet$
 $\mathsf{Perm}(W) = \{ w(x) \mid w \in W \}$

$$W_{A_2} = \langle s, t | s^2 = t^2 = (st)^3 = e \rangle$$
 $\Gamma_{A_2} : {}^{\$}$
Perm $(W) = \{ w(x) | w \in W \}$

$$W_{A_2} = \langle s, t | s^2 = t^2 = (st)^3 = e \rangle \quad \Gamma_{A_2} : \stackrel{5}{\bullet} \stackrel{t}{\bullet}$$

 $Perm(W) = \{ w(x) | w \in W \}$

Let (W, S) be a Coxeter system. Define *(left) inversion sets* as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Let
$$\Gamma_{A_2}$$
: $\stackrel{s}{\bullet}$, with Φ given by the roots
$$\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-) \qquad \stackrel{\alpha_s}{\gamma = \alpha_s + \alpha_t}$$

$$= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$$

$$= \{\alpha_t, \gamma\}$$

Let (W, S) be a Coxeter system. Define (left) inversion sets as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Example

Let (W, S) be a Coxeter system. Define (left) inversion sets as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Let (W, S) be a Coxeter system. Define *(left) inversion sets* as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Let
$$\Gamma_{A_2}$$
: $\stackrel{s}{\bullet}$, with Φ given by the roots
$$\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-) \qquad \stackrel{\alpha_s}{\gamma = \alpha_s + \alpha_t}$$

$$= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$$

$$= \{\alpha_t, \gamma\}$$

Let (W, S) be a Coxeter system. Define (left) inversion sets as the set $\mathbf{N}(w) := \Phi^+ \cap w(\Phi^-)$.

Let
$$\Gamma_{A_2}$$
: $\stackrel{\$}{\bullet}$, with Φ given by the roots
$$\mathbf{N}(ts) = \Phi^+ \cap ts(\Phi^-) \qquad \qquad \stackrel{\alpha_s}{\gamma} = \stackrel{\alpha_t}{\alpha_s} + \stackrel{\alpha_t}{\alpha_t}$$

$$= \Phi^+ \cap \{\alpha_t, \gamma, -\alpha_s\}$$

$$= \{\alpha_t, \gamma\}$$

Weak order and Inversion sets

Given $w, u \in W$ then $w \leq_R u$ if and only if $\mathbf{N}(w) \subseteq \mathbf{N}(u)$.

Example

Let $\Gamma_{A_2}: \stackrel{s}{\bullet} \stackrel{t}{\longrightarrow}$, with Φ given by the roots

Definition (Root Inversion Set)

Let xW_I be a standard parabolic coset. The *root inversion set* is the set

$$\mathbf{R}(xW_I) := x(\Phi^- \cup \Phi_I^+)$$

Note that $N(x) = \mathbf{R}(xW_{\varnothing}) \cap \Phi^+$.

$$\mathbf{R}(sW_{\{t\}}) = s(\Phi^- \cup \Phi_{\{t\}}^+)
= s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\})
= \{\alpha_s, -\gamma, -\alpha_t, \gamma\}$$

$$\mathbf{R}(sW_{\{t\}}) = s(\Phi^- \cup \Phi_{\{t\}}^+)
= s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\})
= \{\alpha_s, -\gamma, -\alpha_t, \gamma\}$$

$$\begin{aligned} \mathbf{R}(sW_{\{t\}}) &= s(\Phi^- \cup \Phi_{\{t\}}^+) \\ &= s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\}) \\ &= \{\alpha_s, -\gamma, -\alpha_t, \gamma\} \end{aligned}$$

$$\begin{aligned} \mathbf{R}(sW_{\{t\}}) &= s(\Phi^- \cup \Phi_{\{t\}}^+) \\ &= s(\{-\alpha_s, -\alpha_t, -\gamma\} \cup \{\alpha_t\}) \\ &= \{\alpha_s, -\gamma, -\alpha_t, \gamma\} \end{aligned}$$

Equivalent definitions

Theorem (D., Hohlweg, Pilaud [2016])

The following conditions are equivalent for two standard parabolic cosets xW_I and yW_J in the Coxeter complex \mathcal{P}_W

- 1 $xW_I \leq_F yW_J$
- **2** $\mathbf{R}(xW_I) \setminus \mathbf{R}(yW_J) \subseteq \Phi^-$ and $\mathbf{R}(yW_J) \setminus \mathbf{R}(xW_I) \subseteq \Phi^+$.
- $X \leq_R y \text{ and } xw_{\circ,I} \leq_R yw_{\circ,J}.$

$-\alpha_s$ $-\alpha_t$ Equivalence for type A_2 Coxeter System α_t sts $stW_{\{s\}}$ $tsW_{\{t\}}$ (2) (2) (1) $sW_{\{t\}}$ [sts, sts] (1)(1) $W_{\{s\}}$ [ts, sts] [st, sts] [st, st][ts, ts] $xW_I \leq_F yW_J$ $R(xW_I) \setminus R(yW_J) \subseteq \Phi^ R(yW_J) \setminus R(xW_I) \subseteq \Phi^+$ [*e*, *sts*] [t, ts][s, st][s,s][t, t][e, t] $xw_{\circ,I} \leq_R yw_{\circ,J}$

[e, e]

- In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended the weak order to an order on all faces for type A using inversion tables. They
 - 1 gave a local definition of this order using covers, \checkmark
 - 2 gave a global definition of this order combinatorially, and
 - 3 showed that the poset for this order is a lattice. \checkmark
- In 2006, Ronco and Palacios extended this new order to Coxeter groups of all types using cover relations.
- Problems: Can we find a global definition for this poset, and is it a lattice?

Facial weak order lattice

Theorem (D., Hohlweg, Pilaud [2016])

The facial weak order (\mathcal{P}_W, \leq_F) is a lattice with the meet and join of two standard parabolic cosets xW_1 and yW_1 given by:

$$xW_I \wedge yW_J = z_{\wedge}W_{K_{\wedge}},$$

$$xW_I \vee yW_J = z_{\vee}W_{K_{\vee}}.$$

where.

$$z_{\wedge} = x \wedge y$$
 and $K_{\wedge} = D_L(z_{\wedge}^{-1}(xw_{\circ,I} \wedge yw_{\circ,J}))$, and $z_{\vee} = xw_{\circ,I} \vee yw_{\circ,J}$ and $K_{\vee} = D_L(z_{\vee}^{-1}(x \vee y))$

Corollary (D., Hohlweg, Pilaud [2016])

The weak order is a sublattice of the facial weak order lattice.

Example: A_2 and B_2

Example: A_2 and B_2

Example (Meet example)

Recall

$$xW_I \wedge yW_J = z_{\wedge}W_{K_{\wedge}}$$

where $z_{\wedge} = x \wedge y$
 $K_{\wedge} = D_L(z_{\wedge}^{-1}(xw_{\circ,I} \wedge yw_{\circ,J}))$

We compute $ts \wedge stsW_{\{t\}}$.

$$z_{\wedge} = ts \wedge sts = e$$

$$K_{\wedge} = D_L(z_{\wedge}^{-1}(tsw_{\circ,\emptyset} \wedge stsw_{\circ,t}))$$

$$= D_L(e(ts \wedge stst))$$

$$= D_L(ts) = \{t\}.$$

Möbius function

Recall that the *Möbius function* of a poset (P, \leq) is the function $\mu: P \times P \to \mathbb{Z}$ defined inductively by

$$\mu(p,q) := egin{cases} 1 & ext{if } p = q, \ -\sum_{p \leq r < q} \mu(p,r) & ext{if } p < q, \ 0 & ext{otherwise.} \end{cases}$$

Proposition (D., Hohlweg, Pilaud [2016])

The Möbius function of the facial weak order is given by

$$\mu(eW_{\varnothing}, yW_J) = egin{cases} (-1)^{|J|}, & \textit{if } y = e, \ 0, & \textit{otherwise}. \end{cases}$$

Further Works

- Work with Thomas McConville (MIT) to extend the facial weak order to oriented matroids.
- Can we extend the weak order to other objects?

Thank you!

