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Background
Facial Weak Order

Lattice and properties

Coxeter Systems
Motivation

History and Background

The weak order was introduced on Coxeter groups by Björner
in 1984, it was shown to be a lattice.

Finite Coxeter System (W ,S) such that

W := 〈s ∈ S | (si sj)mi,j = e for si , sj ∈ S〉

where mi ,j ∈ N? and mi ,j = 1 only if i = j .

A Coxeter diagram ΓW for a Coxeter System (W ,S) has S as
a vertex set and an edge labelled mi ,j when mi ,j > 2.

si sj

mi,j

Example

WB3 = 〈s1, s2, s3 | s2
1 = s2

2 = s2
3 = (s1s2)4 = (s2s3)3 = (s1s3)2 = e〉

ΓB3 :
s1 s2 s3

4

Let (W ,S) be a Coxeter system.

Let w ∈W such that w = s1 . . . sn for some si ∈ S . We say
that w has length n, `(w) = n, if n is minimal.

Let the (right) weak order be the order on the Cayley graph

where
w ws

and `(w) < `(ws).

For finite Coxeter systems, there exists a longest element in
the weak order, w◦.

Example

Let ΓA2 :
s t

.

e

t s

ts st

sts = w◦ = tst
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Motivation

In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order to an order on all faces for type A using
inversion tables. They

1 gave a local definition of this order using covers,

X

2 gave a global definition of this order combinatorially, and

X

3 showed that the poset for this order is a lattice.

X

In 2006, Ronco and Palacios extended this new order to
Coxeter groups of all types using cover relations.

Our motivation was to continue this work for all Coxeter
groups.
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A. Dermenjian (UQÀM) Facial Weak Order 5 April 2016 3/24



Background
Facial Weak Order

Lattice and properties

Coxeter Systems
Motivation

Motivation

In 2001, Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order to an order on all faces for type A using
inversion tables. They

1 gave a local definition of this order using covers, X
2 gave a global definition of this order combinatorially, and X
3 showed that the poset for this order is a lattice. X

In 2006, Ronco and Palacios extended this new order to
Coxeter groups of all types using cover relations.

Our motivation was to continue this work for all Coxeter
groups.
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Background
Facial Weak Order

Lattice and properties

Local Definition
Global Definition
Root Inversion Set
Equivalence

Parabolic Subgroups
Let I ⊆ S .

WI = 〈I 〉 is the standard parabolic subgroup with long
element denoted w◦,I .
W I := {w ∈W | `(w) ≤ `(ws), for all s ∈ I} is the set of
minimal length coset representatives for W /WI .
Any element w ∈W admits a unique factorization
w = w I · wI with w I ∈W I and wI ∈WI .
By convention in this talk xWI means x ∈W I .
Coxeter complex - PW - the abstract simplicial complex
whose faces are all the standard parabolic cosets of W .

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
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Background
Facial Weak Order

Lattice and properties

Local Definition
Global Definition
Root Inversion Set
Equivalence

Facial Weak Order

Definition (Krob et.al. [2001], Palacios, Ronco [2006])

The (right) facial weak order is the order ≤F on the Coxeter
complex PW defined by cover relations of two types:

(1) xWI <· xWI∪{s} if s /∈ I and x ∈W I∪{s},

(2) xWI <· xw◦,Iw◦,Ir{s}WIr{s} if s ∈ I ,

where I ⊆ S and x ∈W I .
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Background
Facial Weak Order

Lattice and properties

Local Definition
Global Definition
Root Inversion Set
Equivalence

Facial weak order example
(1) xWI <· xWI∪{s} if s /∈ I and x ∈W I∪{s}

(2) xWI <· xw◦,Iw◦,Ir{s}WIr{s} if s ∈ I

e

s t

st ts

sts

W{s} W{t}

tW{s}sW{t}

stW{s} tsW{t}

W

(1) (1)

(1) (1)

(1) (1)

(2) (2)

(2) (2)

(2) (2)

(1) (1)

(2) (2)
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Motivation
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Lattice and properties

Local Definition
Global Definition
Root Inversion Set
Equivalence

Root System

Let (V , 〈·, ·〉) be a Euclidean space.

Let W be a group generated by a set of reflections S .
W ↪→ O(V ) gives representation as a finite reflection group.

The reflection associated to α ∈ V \{0} is

sα(v) = v − 2 〈v , α〉
||α||2

α (v ∈ V )

A root system is Φ := {α ∈ V | sα ∈W , ||α|| = 1}
We have Φ = Φ+ t Φ− decomposable into positive and
negative roots.

αs

γ = αs + αt

αt

−αs

−γ

−αt

s t
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Facial Weak Order

Lattice and properties

Local Definition
Global Definition
Root Inversion Set
Equivalence

Inversion Sets

Let (W ,S) be a Coxeter system.
Define (left) inversion sets as the set N(w) := Φ+ ∩ w(Φ−).

Example

Let ΓA2 :
s t

, with Φ given by the roots
αs

γ = αs + αt

αt

−αs

−γ
−αt

s t

N(ts) = Φ+ ∩ ts(Φ−)

= Φ+ ∩ {αt , γ,−αs}
= {αt , γ}
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Facial Weak Order

Lattice and properties

Local Definition
Global Definition
Root Inversion Set
Equivalence

Weak order and Inversion sets

Given w , u ∈W then w ≤R u if and only if N(w) ⊆ N(u).

Example

Let ΓA2 :
s t

, with Φ given by the roots
αs

γ = αs + αt

αt

−αs

−γ
−αt

e

t s

ts st

sts

∅

{αt} {αs}

{αt , γ} {αs , γ}
Φ+
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Lattice and properties

Local Definition
Global Definition
Root Inversion Set
Equivalence

Root Inversion Set

Definition (Root Inversion Set)

Let xWI be a standard parabolic coset. The root inversion set is
the set

R(xWI ) := x(Φ− ∪ Φ+
I )

Note that N(x) = R(xW∅) ∩ Φ+.

Example

R(sW{t}) = s(Φ− ∪ Φ+
{t})

= s({−αs ,−αt ,−γ} ∪ {αt})
= {αs ,−γ,−αt , γ}

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
αs

γ
αt

−αs

−γ
−αt
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A. Dermenjian (UQÀM) Facial Weak Order 5 April 2016 12/24



Background
Facial Weak Order

Lattice and properties

Local Definition
Global Definition
Root Inversion Set
Equivalence

Equivalent definitions

Theorem (D., Hohlweg, Pilaud [2016])

The following conditions are equivalent for two standard parabolic
cosets xWI and yWJ in the Coxeter complex PW

1 xWI ≤F yWJ

2 R(xWI ) r R(yWJ) ⊆ Φ− and R(yWJ) r R(xWI ) ⊆ Φ+.

3 x ≤R y and xw◦,I ≤R yw◦,J .

Remark Note that showing (1) ⇒ (3) and (3) ⇒ (2) is easy, but
(2) ⇒ (1) is more difficult. We used induction on the symmetric
difference between the root inversion sets for the proof.
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Lattice and properties

Local Definition
Global Definition
Root Inversion Set
Equivalence

Equivalence for type A2 Coxeter System
αs

γ
αt

−αs

−γ
−αt

xWI ≤F yWJ

e

st

stts

sts

W{s}W{t}

tW{s} sW{t}

stW{s}tsW{t}

W

(1)(1)

(1)(1)

(1)(1)

(2)(2)

(2)(2)

(2)(2)

(1)(1)

(2)(2)

x ≤R y

xw◦,I ≤R yw◦,J
[e, e]

[s, s][t, t]

[st, st][ts, ts]

[sts, sts]

[e, s][e, t]

[t, ts] [s, st]

[st, sts][ts, sts]

[e, sts]

R(xWI ) r R(yWJ) ⊆ Φ−

R(yWJ) r R(xWI ) ⊆ Φ+
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Lattice and properties

Lattice
Möbius function
Lattice Congruences

Facial weak order lattice

Theorem (D., Hohlweg, Pilaud [2016])

The facial weak order (PW ,≤F ) is a lattice with the meet and join
of two standard parabolic cosets xWI and yWJ given by:

xWI ∧ yWJ = z∧WK∧ ,

xWI ∨ yWJ = z∨WK∨ .

where,

z∧ = x ∧ y and K∧ = DL

(
z−1
∧ (xw◦,I ∧ yw◦,J)

)
, and

z∨ = xw◦,I ∨ yw◦,J and K∨ = DL

(
z−1
∨ (x ∨ y)

)
Corollary (D., Hohlweg, Pilaud [2016])

The weak order is a sublattice of the facial weak order lattice.
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Lattice
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Example: A2 and B2

e

s t

st ts

sts

W{s} W{t}

tW{s}sW{t}

stW{s} tsW{t}

W

Example (Meet example)

Recall

xWI ∧ yWJ = z∧WK∧

where z∧ = x ∧ y

K∧ = DL(z−1
∧ (xw◦,I ∧ yw◦,J))

We compute ts ∧ stsW{t}.

z∧ = ts ∧ sts = e

K∧ = DL(z−1
∧ (tsw◦,∅ ∧ stsw◦,t))

= DL(e(ts ∧ stst))

= DL(ts) = {t}.

e

s t

st ts

sts tst

stst

W{s} W{t}

sW{t} tW{s}

stW{s} tsW{t}

stsW{t} tstW{s}

W
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Proof outline

Recall that xWI ≤F yWJ ⇔ x ≤r y , and xw◦,I ≤R yw◦,J .
We want to show that xWI ∧ yWJ = z∧WK∧ where z∧ = x ∧ y and
K∧ = DL

(
z−1
∧ (xw◦,I ∧ yw◦,J)

)
First we show that this element is in the Coxeter complex
z∧ ∈WK∧ .

We then show it’s an upper bound: x ∧ y ≤R x , y . Also,
w◦,K∧ ≤R z−1

∧ (xw◦,I ∧ yw◦,J) implies z∧w◦,K∧ ≤R xw◦,I ∧ yw◦,J .

Finally we show uniqueness by supposing there exists another
element zWK ≤F xWI , yWJ . Then we have z ≤R x ∧ y = z∧.
Showing zw◦,K ≤R z∧w◦,K∧ is done by looking at descents and
the fact that z ≤R z∧.

Join is found by an anti-automorphism.
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Lattice and properties

Lattice
Möbius function
Lattice Congruences

Möbius function
Recall that the Möbius function of a poset (P,≤) is the
function µ : P × P → Z defined inductively by

µ(p, q) :=


1 if p = q,

−
∑

p≤r<q

µ(p, r) if p < q,

0 otherwise.

Proposition (D., Hohlweg, Pilaud [2016])

The Möbius function of the facial weak order is given by

µ(eW∅, yWJ) =

{
(−1)|J|, if y = e,

0, otherwise.
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Lattice Congruences

Definition

An order congruence is an equivalence relation ≡ on a poset
(P,≤) such that:

1 Every equivalence class under ≡ is an interval of (P,≤).

2 The projection π↑ : P → P (resp. π↓ : P → P), which maps an
element of P to the maximal (resp. minimal) element of its
equivalence class, is order preserving.

Theorem (D., Hohlweg, Pilaud [2016])

The equivalence classes, denoted , given by the following
projection give an order congruence on (PW ,≤F ). Let Π↑(xWI ) be
the largest standard parabolic coset in [π↑(x), π↑(xw◦,I )] containing
π↑(x).
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Facial Boolean Lattice

Corollary (D., Hohlweg, Pilaud [2016])

Let the (left) root descent set of a coset xWI be the set of roots

D(xWI ) := R(xWI ) ∩ ±∆ ⊆ Φ.

Let xWI
des yWJ if and only if D(xWI ) = D(yWJ).

e

s t

st ts

sts

W{s} W{t}

tW{s}sW{t}

stW{s} tsW{t}

W [e]des

[s]des [t]des

[sts]des

[W{s}]des [W{t}]des

[stW{s}]des [tsW{t}]des
[W ]des

D(e)

D(s) D(t)

D(st) D(ts)

D(sts)

D(W{s}) D(W{t})

D(sW{t}) D(tW{s})

D(stW{s}) D(tsW{t})

D(W )
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Facial Cambrian Lattice

Corollary (D., Hohlweg, Pilaud [2016])

Let c be any Coxeter element of W . Let ≡c be the c-Cambrian
congruence (see Reading [Cambrian Lattice, 2004]). Then let
xWI

c yWJ ⇐⇒ x ≡c y and xw◦,I ≡c yw◦,J .

e

s t

st ts

sts

W{s} W{t}

tW{s}sW{t}

stW{s} tsW{t}

W

c = st

[e]c

[s]c

[st]c

[sts]c

[W{s}]c
[W{t}]c

[t]c[sW{t}]c

[stW{s}]c
[tsW{t}]c

[W ]c
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Thank you!

rsWr

Ws

srWs

srsWt

sWr sWt

srWt stWr

srtWs

stWs

srtsWt srtsWr

Wrs Wst

sWrt

stWrs
srWst

rsWrt

srtsWrt

srt

st

srts

srs

s

sr

Wr

rWs
rWt

rsWt

Wt

tWr

rtWs

rstWsrstWr

tWs

rtsWt rtsWr

rtstWr
srstWs

rtsrWt

rtsrtWs

tsWt

tsWr

srtstWr

tsrWs

stsWr

tsrWt

stsrWs

srtsrWt

Wrt

rWst tWrs

rtsWrt

rstWrs tsrWst

tsWrt

r

rs

e

rt

rst

t

rts

rtst
srst

rtsrt

ts

srtst

rtsr

stsr

sts

tsr

srtsr

srtsrt

W

sr

e

t
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