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Outline

m How to arrange hyperplanes.
m The facial weak order in all its glory.
m The path of least resistance.

m What else?
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Background Hyperplane Arrangements Poset of Regions

What is a hyperplane?

m (V, (")) - ndim real Euclidean vector space.
m A hyperplane H is codim 1 subspace of V with normal ey.

Example
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Background Hyperplane Arrangements Poset of Regions

Arranging hyperplanes
m A hyperplane arrangementis A = {Hy, Ha, ..., Hg}.
m Ais centralif {0} CN.A.
m Central A is essential if {0} = A.

Example

Not central Central Central
Not essential Essential

A. Dermenjian (UQAM) The facial weak order in all its glory



Background Hyperplane Arrangements Poset of Regions

In terms of food?
Central essential hyperplane arrangement
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Background Hyperplane Arrangements Poset of Regions

Exploding arrangements

m Regions %, - closures of connected components of V
without A.

m faces .7, - intersections of some regions.

H; Hs
F3 F.
Ry R,

Fa Fi

H.

Rs Ry

Fs Fo
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Background Hyperplane Arrangements Poset of Regions

A regional order

m Base region B € %, - some fixed region

m Separation set for R € %4
S(R) ={H € A| H separates R from B}
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A regional order

m Base region B € %, - some fixed region

m Separation set for R € %4
S(R) ={H € A| H separates R from B}
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Background Hyperplane Arrangements Poset of Regions

A regional order

m Base region B € %, - some fixed region

m Separation set for R € %4
S(R) ={H € A| H separates R from B}

H; Hs
A
{H2, Ha} {Hh, He}
H:
{Hs} {H}
0
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Background Hyperplane Arrangements Poset of Regions

A regional order

m Base region B € %, - some fixed region

m Separation set for R € %4
S(R) ={H € A| H separates R from B}

m Poset of Regions PR(A, B) where
R <pr R < S(R) - S(R/) Hy

H>
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Background Hyperplane Arrangements Poset of Regions

Ordering all the things
m Lattice - poset where every two elements have a meet
(greatest lower bound) and join (least upper bound).

The lattice (N, |) where a< b < a|b.
m meet - greatest common divisor
m join - least common multiple
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Background Hyperplane Arrangements Poset of Regions

Simply simplicial arrangements
m A region R is simplicial if normal vectors for boundary
hyperplanes are linearly independent.
m A is simplicial if all Z,4 simplicial.

Example

SUEE Not simplicial
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Background Hyperplane Arrangements Poset of Regions

A regional lattice

Theorem (Bjorner, Edelman, Ziegler '90)

If A is simplicial then PR(A, B) is a lattice for any B € Z4. If
PR(A, B) is a lattice then B is simplicial.

Example
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Facial weak order in all its glory
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) Facial Intervals Lattice
Facial Weak Order All the definitions!

Facial intervals

Proposition (Bjorner, Las Vergas, Sturmfels, White, Ziegler '93)

Let A be central with base region B. For every F € %, there is
a unique interval [mg, Mg] in PR(A, B) such that
[me, Me] = {R € %4 | FC R}

H1 H3
B\ g5 /F Rs
. R, R, . Ra R,
H2 4 0 1
Rs R, Rs R;
B/ B \FR .
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Facial Intervals Lattice

Facial Weak Order All the definitions!

Facial weak order (!!!)
Let A be a central hyperplane arrangement and B a base
region in Za.

The facial weak order is the order FW(.A, B) on .%4 where for
F,Ge Z4:

F < G < mg <pr Mg and Mg <pr Mg
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. Facial Intervals Lattice
Facial Weak Order All the definitions!

A first example

94/ \92 [Re, Rs] [Re, R3]

\\ / [Ra4, R4]

[R5v R4]

[R2, Re]

[B, Rs]

[R1, Rz]

[Rs, Rs) [R1, Ri]

[B, Rs] [B, Ri]
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A first example
/HS\ [Rs, Rs]
Ry Ry [/:?47 R3] b [Rg, R3]
+ + [Ra, Ra
Rs Ry ° °
\\ ) /
[R5, R4] L] L] [B7 H3] L]
[Rs, Rs]
[B> R5] ) [B~ R1]

(B, B
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A first example
[As, As]
Ry Ry [R4, Rg] b [Rg. Rg]
i ) [Ra, Rd] . .
\ )
[Rs,Rs] e e [B,R] .
[Rs, Rs]
(B, Rs] . (B, ARi]

CX:
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. Facial Intervals
Facial Weak Order All the definitions!

A first example
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. Facial Intervals Lattice
Facial Weak Order All the definitions!

Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud *19+)

The facial weak order FW(.A, B) is a lattice when PR(A, B) is a
lattice.
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Motivation Geometric versions
The Process Coxeter Groups Equivalence + Lattice
Facial Weak Order Hyperplanes

Rewind: How did we get here?

A. Dermenjian (UQAM) The facial weak order in all its glory



Motivation Geometric versions
The Process Coxeter Groups Equivalence + Lattice
Facial Weak Order Hyperplanes

The origins

m 2001: Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order of Coxeter groups to an order on all the
faces of its associated arrangement for type A.

m 2006: Palacios and Ronco extended this new order to
Coxeter groups of all types using cover relations.
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Motivation Geometric versions
The Process Coxeter Groups Equivalence + Lattice
Facial Weak Order Hyperplanes

The origins

m 2001: Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order of Coxeter groups to an order on all the
faces of its associated arrangement for type A.

m 2006: Palacios and Ronco extended this new order to
Coxeter groups of all types using cover relations.
m Questions:

m Can we extend this to all Coxeter group types and
hyperplane arrangements?

m Can we find both local and global definitions?

m When do we actually get a lattice?
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Motivation Geometric versions
The Process Coxeter Groups Equivalence + Lattice
Facial Weak Order Hyperplanes

The infamous Coxeter
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Coxeter’s Idea

Dermenjian (UQAM) The facial weak order in all its glory




Motivation Geometric versions
The Process Coxeter Groups Equivalence + Lattice
Facial Weak Order Hyperplanes

Coxeter’s Idea
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Coxeter’s Idea

. st(x) - s(x)

- ts(x) - t(x)
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Coxeter’s Idea

. st(x) - s(x)

- ts(x) - t(x)
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Motivation Geometric versions
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A failure
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Dermenjian (UQAM) The facial weak order in all its glory




Motivation Geometric versions
The Process Coxeter Groups Equivalence + Lattice
Facial Weak Order Hyperplanes

Coxeterian systems
m Finite Coxeter System (W, S) such that
W:=(se S| (s;5)™ =efors;sjeS)
where m;; € N*and m;; =1 only if i = j.
m A Coxeter diagram Iy for a Coxeter System (W, S) has S
as a vertex set and an edge labelled m; ; when m; ; > 2.
mj ;

*—0

S S;

Wg, = <S1732, S3| 82 =55 =55 =(51%)" = (5283)% = (51%3)° = e>
4

rBZ r————o—0

8 Sq So S3
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Coxeterian systems
m Finite Coxeter System (W, S) such that

W:=(se S| (s;5)™ =efors;sjeS)

where m;; € N* and m;; =1 only if / = J.
m A Coxeter diagram Ty for a Coxeter System (W, S) has S
as a vertex set and an edge labelled m; ; when m; ; > 2.
m;

*—0

Si S;

Wa, = Spi1, symmetric group.

" S1 S2 S3 Sn—1 Sn
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Coxeterian systems
m Finite Coxeter System (W, S) such that

W:=(se S| (s;5)™ =efors;sjeS)

where m;; € N*and m;; =1 only if i = j.
m A Coxeter diagram Iy for a Coxeter System (W, S) has S
as a vertex set and an edge labelled m; ; when m; ; > 2.

W,,(my = D(m), dihedral group of order 2m.

m
F,z(m) . ———o

Sq So
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Motivation Geometric versions
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A not so strong order

Let (W, S) be a Coxeter system.

m Letwe Wsuchthatw=s;...s,for some s; € S. We say
that w has length n, ¢{(w) = n, if nis minimal.

Let FA2 : §—£

{(stst) = 2 as stst = tstt = ts.

m Let the (right) weak order be the order <g on the Cayley

graph where VY and /(w) < L(ws).
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Motivation Geometric versions
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Facial Weak Order Hyperplanes

A not so strong lattice

Theorem (Bjorner ’84)

Let (W, S) be a finite Coxeter system. The weak order is a
lattice graded by length.

m For finite Coxeter systems, there exists a longest element
in the weak order, w,.

Let rA2: §—£

Sts = w, = tst
ts st

t S
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Motivation Geometric versions
The Process Coxeter Groups Equivalence + Lattice
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Parabolic Subgroups
(W, S) a Coxeter systemand / C S.
m W, = (I) — standard parabolic subgroup (long elt: w, ).
m W= {we W] ¢w) < {(ws),forall s € I} is the set of
min length coset representatives for W/ W,.
m Unique factorization: w = w! - wy with w!/ € W/, w, e W,.
m By convention in this talk xW, means x ¢ W',

Let Tw: £_§_£_1.J and [ = {r,t, u}.
Then Fw,: & 4

w = rtustr w = rts - utr
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Motivation Geometric versions
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(W, S) a Coxeter systemand / C S.

m Coxeter complex - Py - complex whose faces are all the
standard parabolic cosets of W.

sts
fSW{t} StW{S}

Is st
tW{S} SW{t}
t S
Wiy Wisy
e
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The first stepping stone

Let (W, S) be a finite Coxeter system.

Definition (Krob et.al. ‘01, type A; Palacios, Ronco '06)

The (right) facial weak order is the order <g on the Coxeter
complex Py defined by cover relations of two types:

(1) xW, < xWys ifs¢landx e WPisH
(2) xW, < XWo IWo [\ {s} W/\{S} ifsel,

where | C Sand x € W/.
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A Coxeter example

(1) XW; < xW)_q if s ¢ 1and x € WIS
(2) xW, < XWo,lWo,l\{s} W/\{s} ifsel

sts
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Facial intervals for Coxeter groups

Proposition (Bjérner, Las Vergas, Sturmfels, White, Ziegler '93)

Let (W, S) be a finite Coxeter system and xW, a standard
parabolic coset. Then there exists a unique interval [x, xw, ] in
the weak order such that

xXW =[x, xw, ]
sts [sts, sts][ ,

tsWiy StWg, sts [ts, sts] st, sts]
ts st ts st [ts,ts st, st
tWisy @ sWin f O s ltts] s, st]
t S e [t, 1] [s, 9]
Wi Wisy e, 1] e, s]

e (e, €]
The facial weak order in all its glory
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Facial weak order for Coxeter groups
Definition

Let <g be the order on the Coxeter complex Py defined by

xW, <p yW,; & x <g y and xw, | <g YW,y

sts
ts st

[sts, sts]
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Visiting geometric lands
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A system of roots

m Let A be a Coxeter arrangement.
m A root systemis &= {£as e V| Hs € A, ||as|| = 1}

m We have ¢ = ¢* LI &~ decomposable into positive and
negative roots.

Let FA2 : §—£
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Inversions

Let (W, S) be a Coxeter system.
Define (left) inversion sets as the set N(w):= & N w(d™).

s 7t
- 4, —Qs

Let T4, : s | , with ® given by the roots

N(ts) = &* N ts(¢") AN
= ¢+ N {Oét, v, _Ols}
— {O[h’)/}
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Inversions

Let (W, S) be a Coxeter system.
Define (left) inversion sets as the set N(w):= & N w(d™).

s 7t
7(1[ N y — Qg
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Inversions

Let (W, S) be a Coxeter system.
Define (left) inversion sets as the set N(w):= & N w(d™).

s 7t
BN —Qs

Let T4, : s | , with ® given by the roots

N(ts) = &* N ts(¢") e
= ¢+ N {Oét, v, _Ols}
— {O[h’)/}
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Weak order = Inversion sets

Given w,u € W then w <g uif and only if N(w) C N(u).

-
Let Ta,: $ 1 witho given by the roots *
a: =as+ 0‘:1'
sts o+
ts st {ar, v} {as, 7}
t S {ou} {as}
e %]
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Root inversions

Definition (Root Inversion Set)

Let xW, be a standard parabolic coset. The root inversion set is
the set
R(xW):=x(¢~ U o))

Note that N(x) = R(xWz) N &7

fSW{t} sts StW{s}
ts st . T .
fW{S} SW{[} *
t S o v a[
Wi 7 Wi
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Root inversions

Example

R(SW{t}) = S((D_ U (Dj{"_t})

= s({—as, —at, =7} U {at})
= {as, —, —at, 7}

fSW{t} sts StW{s}
ts st .0
fW{S} SW{ t >t!<
t S ag > at
Wiy 7 Wi
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Root inversions

Example

R(SW{t}) = S((D_ U (Dj{"_t})

= s({—as, —at, =7} U {at})
= {as, —, —at, 7}

fSW{t} sts StW{s}
ts st s .
fW{S} SW{[} > <
t s asg > Vo
Wiy 7 Wi
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= s({—as, —at, =7} U {at})
= {as, —, —at, 7}

fSW{t} sts StW{s}
ts st .0
fW{S} SW{ t *
t S ag > at
Wiy 7 Wi

A. Dermenjian (UQAM) The facial weak order in all its glory




Motivation Geometric versions
The Process Coxeter Groups Equivalence + Lattice
Facial Weak Order Hyperplanes

Root inversions

Example

R(SW{t}) = S((D_ U (Dj{"_t})

= s({—as, —at, =7} U {at})
= {as, —, —at, 7}

fSW{t} sts StW{s}

ts st e O L., 8
o K,
t s ag > at T@

Wiy 4 Wisy
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Root inversions

Proposition (D., Hohlweg, Pilaud ’18)

Let xW, be a standard parabolic coset of W. Then

inner primal cone (F(xW))) = cone (R(xW))) .

tSW{t} sts StW{s}
is st

— §
—ot —Qs
t S e v . &

Wi 4 Wisy

A. Dermenjian (UQAM) The facial weak order in all its glory



Motivation Geometric versions
The Process Coxeter Groups Equivalence + Lattice
Facial Weak Order Hyperplanes

Equivalent definitions

Theorem (D., Hohlweg, Pilaud ’18)

Let (W, S) be a finite Coxeter system. The following conditions
are equivalent for two standard parabolic cosets xW, and yW,
in the Coxeter complex Py

1. xW, <r yW,
2. R(XW[) N R(yWJ) C o™ and R(yWJ) N R(XW/) C o,
3. x<gr y andXWo,l <R YWo y-

A. Dermenjian (UQAM) The facial weak order in all its glory
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Facial weak order lattice
Theorem (D., Hohlweg, Pilaud ’18)

The facial weak order (Pw, <f) is a lattice with the meet and
Jjoin of two standard parabolic cosets xW, and yW, given by:

xWiAyW, =z, WKA,
xW,v yWw, =z, WKV-
where,

A

Z,=XW, Vyw,y and K, =D (z7'(xVy))

vV

Z=XAYy and K, = D (z7'(xw, ) A yw, ), and

Corollary (D., Hohlweg, Pilaud ’18)

The weak order is a sublattice of the facial weak order lattice.
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Example: A, and B»

sts tStW{s} stst sts W{ £}
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Back to arrangements
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One step at a time

Proposition (D., Hohlweg, McConville, Pilaud, 19+)

For F,G e %, if
1. |dim(F) — dim(G)| = 1
2. mFCGandMg= Mg, or Fs

/
mGC Fandmg=mg. R, /,
then F < G. \

‘\

R\ g /F
. R, R» . \ Ry
Fo
Rs Ry
Fs Ao Fo
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Zonotopes
m Zonotope Z, is the convex polytope:

k
Zy = {v eV]v= Z)\,-e,-, such that |\;| < 1 for all i}
i=1

Theorem (Edelman ‘84, McMullen *71)

There is a bijection between %4 and the nonempty faces of Z,
given by the map

T(F):{VE V‘ vV = Z A€ + Z u,-e,}

F(H;)=0 F(H;)#0
where |\j| < 1 for all i and p; = F(H;)
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Zonotope example
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Root inversions for arrangements

m roots ® 4 = {+ey,+en,...,+ex}
m root inversion set
R(F) ={ee 4| (x,e) <0forsome x € int(F)}.

(R R(R.
(Fy ) RIF) o) R(F)

7(F4) 7(R2)  R(Ra) R(R2)

7(Fa4) 7(F1)  R(Fa) R(F1)

7(Rs) 7(R1) R(Rs) R(Ry)
(Fs) (Fo) R(Fs) R(Fo)
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Root inversions for arrangements

Proposition (D., Hohlweg, McConville, Pilaud *19+)

Let F be a face. Then

inner primal cone (7(F)) = cone (R(F)).
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Covectors
m covector - a vector in {—, 0, +}A with signs relative to
hyperplanes.

m £ C{—,0 +}"- setof covectors

Fa(Hi) = +; Fa(H2) = 0; F4(H3) = —  F4 < (+,0,-)
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Facial Weak Order Hyperplanes
Covectors
m covector - a vector in {—,0, +}A with signs relative to
hyperplanes.

m £ C{—,0,+}" - set of covectors

Fa(Hi) = +; Fa(H2) = 0; F4(H3) =~  F4 < (+,0,-)
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Covector Definition

For X, Y € L:

X<, Yo XH) > Y(H) YHwith — <0<+

)
) [ ]

0, —, — ’ (—,—,0)
o 7)/'./‘ ‘\.\(7 .
T S
)I ®(0,0,0) o(—,0,+)
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Equivalent definitions

Theorem (D., Hohlweg, McConville, Pilaud *19+)

Let A be a hyperplane arrangement. For F, G € %, the
following are equivalent:

B mg <pr Mg and Mg <pr Mg in poset of regions PR(A, B).
m There exists a chain of covers in FW(A, B) such that

F=F<F<- ---<F=G

m F <, G interms of covectors (F(H) > G(H) VH € A)
m R(F)\R(G) C ¢, and R(G)\R(F) C ¢7,.
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Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud *19+)

The facial weak order FW(.A, B) is a lattice when PR(A, B) is a
lattice.

Corollary (D., Hohlweg, McConville, Pilaud *19+)

The lattice of regions is a sublattice of the facial weak order
lattice when A is simplicial.
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Properties of the FWO
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Semi-distributive duality

m The dual of a poset P is the poset P% where x < y in P iff
y < xin P%. A poset is self-dual if P = P.

m A lattice is semi-distributive if x V y = x vV z implies
xVy=xV(yAZz)and similarly for the meets.
Theorem (D., Hohlweg, McConville, Pilaud *19+)

The facial weak order FW(.A, B) is self-dual. If furthermore, A is
simplicial, FW (A, B) is a semi-distributive lattice.
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Join-irreducible elements
m An element is join-irreducible if and only if it covers exactly
one element.

Proposition (D., Hohlweg, McConville, Pilaud '19+)

If A is a simplicial arrangement and F a face with facial interval
[mg, ME]. Then F is join-irreducible in FW(.A, B) if and only if
ME is join-irreducible in PR(A, B) and codim(F) € {0,1}

Proposition (D., Hohlweg, Pilaud ’18)

Let (W, S) be a finite Coxeter system. A standard parabolic
coxet xW, is join-irreducible in the facial weak order if and only
if we have one of the two following cases

m /= @ and x is join-irreducible in the right weak order, or
m | = {s} and xs is join-irreducible in the right weak order.
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Extra Extra Properties Further Works

Maobius function
Recall that the Mdbius function of a poset (P, <) is the
function i : P x P — Z defined inductively by

1 ifx=y,
1(X, y) = - Y uxz) iftx<y,
x<z<y
0 otherwise.

Proposition (D., Hohlweg, Pilaud ’18)

The Médbius function of the facial weak order of a finite Coxeter
system (W, S) is given by

(-1 ify =e,

eWy, yW,)) =
r(eWo, yW) {0, otherwise.
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Extra Extra Properties Further Works

Maobius function
Recall that the Mdbius function of a poset (P, <) is the
function i : P x P — Z defined inductively by

1 if x =y,
M(va):: - Z IU(X>Z) ifX<ya
x<z<y
0 otherwise.

Proposition (D., Hohlweg, McConville, Pilaud *19+)

Let X and Y be faces of A suchthat X < Y andletZ=XnNnY.

(XY%_O4WWMW)#XngwaZ:XJmY
AT o otherwise
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Further Works

m Can we explicitly state the join/meet of two elements for
hyperplane arrangements?

m When is the facial weak order congruence uniform?
m How many maximal chains are there?
m What is the order dimension?

m Can we generalize this to polytopes?
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Thank you!

The facial weak order in all its glory




	Background
	Hyperplane Arrangements
	Poset of Regions

	Facial Weak Order
	Facial Intervals
	All the definitions!
	Lattice

	The Process
	Motivation
	Coxeter Groups
	Facial Weak Order
	Geometric versions
	Equivalence + Lattice
	Hyperplanes

	Extra Extra
	Properties
	Further Works


