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Outline

How to arrange hyperplanes.

The facial weak order in all its glory.

The path of least resistance.

What else?
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How to arrange hyperplanes
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A basic human problem
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What is a hyperplane?

(V , 〈·, ·〉) - n-dim real Euclidean vector space.
A hyperplane H is codim 1 subspace of V with normal eH .

Example
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Arranging hyperplanes
A hyperplane arrangement is A = {H1,H2, . . . ,Hk}.
A is central if {0} ⊆

⋂
A.

Central A is essential if {0} =
⋂
A.

Example

Not central Central
Not essential

Central
Essential
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In terms of food?
Central essential hyperplane arrangement
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Exploding arrangements
Regions RA - closures of connected components of V
without A.
Faces FA - intersections of some regions.
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A regional order
Base region B ∈ RA - some fixed region
Separation set for R ∈ RA
S(R) := {H ∈ A | H separates R from B}

Poset of Regions PR(A,B) where
R ≤PR R′ ⇔ S(R) ⊆ S(R′)

H3H1

H2

B

R1

R3

R4

R5

R2
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Ordering all the things
Lattice - poset where every two elements have a meet
(greatest lower bound) and join (least upper bound).

Example

The lattice (N, |) where a ≤ b ⇔ a |b.
meet - greatest common divisor
join - least common multiple

1

2 3
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...

...
...
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Simply simplicial arrangements
A region R is simplicial if normal vectors for boundary
hyperplanes are linearly independent.
A is simplicial if all RA simplicial.

Example

Simplicial Not simplicial
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A regional lattice

Theorem (Björner, Edelman, Ziegler ’90)

If A is simplicial then PR(A,B) is a lattice for any B ∈ RA. If
PR(A,B) is a lattice then B is simplicial.

Example
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All the definitions!

Lattice

Facial weak order in all its glory
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All the definitions!

Lattice

Facial intervals

Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler ’93)

Let A be central with base region B. For every F ∈ FA there is
a unique interval [mF ,MF ] in PR(A,B) such that
[mF ,MF ] = {R ∈ RA | F ⊆ R}
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All the definitions!

Lattice

Facial weak order (!!!)
Let A be a central hyperplane arrangement and B a base
region in RA.

Definition

The facial weak order is the order FW(A,B) on FA where for
F ,G ∈ FA:

F ≤ G⇔ mF ≤PR mG and MF ≤PR MG

mF

MF mG

MG
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All the definitions!

Lattice

A first example

B

R1

R2

R3

R4

R5

[R1,R2]

[R2,R3][R4,R3]

[R5,R4]

[B,R5] [B,R1]

[B,B]

[R1,R1]

[R2,R2]

[R3,R3]

[R4,R4]

[R5,R5]

[B,R3]

A. Dermenjian (UQAM) The facial weak order in all its glory 30 Aug 2019 16/1010



Background Facial Weak Order The Process Extra Extra Facial Intervals
All the definitions!

Lattice

A first example

B

R1

R2

R3

R4

R5

[R1,R2]

[R2,R3][R4,R3]

[R5,R4]

[B,R5] [B,R1]
[B,B]

[R1,R1]

[R2,R2]

[R3,R3]

[R4,R4]

[R5,R5]

[B,R3]

A. Dermenjian (UQAM) The facial weak order in all its glory 30 Aug 2019 17/1010



Background Facial Weak Order The Process Extra Extra Facial Intervals
All the definitions!

Lattice

A first example

B

R1

R2

R3

R4

R5

[R1,R2]

[R2,R3][R4,R3]

[R5,R4]

[B,R5] [B,R1]
[B,B]

[R1,R1]

[R2,R2]

[R3,R3]

[R4,R4]

[R5,R5]

[B,R3]

A. Dermenjian (UQAM) The facial weak order in all its glory 30 Aug 2019 17/1010



Background Facial Weak Order The Process Extra Extra Facial Intervals
All the definitions!

Lattice

A first example

B

R1

R2

R3

R4

R5

[R1,R2]

[R2,R3][R4,R3]

[R5,R4]

[B,R5] [B,R1]
[B,B]

[R1,R1]

[R2,R2]

[R3,R3]

[R4,R4]

[R5,R5]

[B,R3]

A. Dermenjian (UQAM) The facial weak order in all its glory 30 Aug 2019 17/1010



Background Facial Weak Order The Process Extra Extra Facial Intervals
All the definitions!

Lattice

A first example

B

R1

R2

R3

R4

R5

[R1,R2]

[R2,R3][R4,R3]

[R5,R4]

[B,R5] [B,R1]
[B,B]

[R1,R1]

[R2,R2]

[R3,R3]

[R4,R4]

[R5,R5]

[B,R3]

A. Dermenjian (UQAM) The facial weak order in all its glory 30 Aug 2019 17/1010



Background Facial Weak Order The Process Extra Extra Facial Intervals
All the definitions!

Lattice

A first example

B

R1

R2

R3

R4

R5

[R1,R2]

[R2,R3][R4,R3]

[R5,R4]

[B,R5] [B,R1]
[B,B]

[R1,R1]

[R2,R2]

[R3,R3]

[R4,R4]

[R5,R5]

[B,R3]

A. Dermenjian (UQAM) The facial weak order in all its glory 30 Aug 2019 17/1010



Background Facial Weak Order The Process Extra Extra Facial Intervals
All the definitions!

Lattice

A first example

B

R1

R2

R3

R4

R5

[R1,R2]

[R2,R3][R4,R3]

[R5,R4]

[B,R5] [B,R1]
[B,B]

[R1,R1]

[R2,R2]

[R3,R3]

[R4,R4]

[R5,R5]

[B,R3]

A. Dermenjian (UQAM) The facial weak order in all its glory 30 Aug 2019 17/1010



Background Facial Weak Order The Process Extra Extra Facial Intervals
All the definitions!

Lattice

Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud ’19+)

The facial weak order FW(A,B) is a lattice when PR(A,B) is a
lattice.
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Motivation
Coxeter Groups
Facial Weak Order

Geometric versions
Equivalence + Lattice
Hyperplanes

Rewind: How did we get here?
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Motivation
Coxeter Groups
Facial Weak Order

Geometric versions
Equivalence + Lattice
Hyperplanes

The origins

2001: Krob, Latapy, Novelli, Phan, and Schwer extended
the weak order of Coxeter groups to an order on all the
faces of its associated arrangement for type A.
2006: Palacios and Ronco extended this new order to
Coxeter groups of all types using cover relations.

Questions:
Can we extend this to all Coxeter group types and
hyperplane arrangements?
Can we find both local and global definitions?
When do we actually get a lattice?
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Geometric versions
Equivalence + Lattice
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The infamous Coxeter
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Coxeter’s Idea

s

t

  x
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Motivation
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Facial Weak Order

Geometric versions
Equivalence + Lattice
Hyperplanes

Coxeterian systems
Finite Coxeter System (W ,S) such that

W := 〈s ∈ S | (sisj)mi,j = e for si , sj ∈ S〉
where mi,j ∈ N? and mi,j = 1 only if i = j .
A Coxeter diagram ΓW for a Coxeter System (W ,S) has S
as a vertex set and an edge labelled mi,j when mi,j > 2.

si sj

mi,j

Example

WB3 =
〈

s1, s2, s3 | s2
1 = s2

2 = s2
3 = (s1s2)4 = (s2s3)3 = (s1s3)2 = e

〉
ΓB3 :

s1 s2 s3

4
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Motivation
Coxeter Groups
Facial Weak Order

Geometric versions
Equivalence + Lattice
Hyperplanes

Coxeterian systems
Finite Coxeter System (W ,S) such that

W := 〈s ∈ S | (sisj)mi,j = e for si , sj ∈ S〉

where mi,j ∈ N? and mi,j = 1 only if i = j .
A Coxeter diagram ΓW for a Coxeter System (W ,S) has S
as a vertex set and an edge labelled mi,j when mi,j > 2.

si sj

mi,j

Example

WAn = Sn+1, symmetric group.

ΓAn :
s1 s2 s3 sn−1 sn
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Geometric versions
Equivalence + Lattice
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Coxeterian systems
Finite Coxeter System (W ,S) such that

W := 〈s ∈ S | (sisj)mi,j = e for si , sj ∈ S〉
where mi,j ∈ N? and mi,j = 1 only if i = j .
A Coxeter diagram ΓW for a Coxeter System (W ,S) has S
as a vertex set and an edge labelled mi,j when mi,j > 2.

si sj

mi,j

Example

WI2(m) = D(m), dihedral group of order 2m.

ΓI2(m) :
s1 s2

m
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Geometric versions
Equivalence + Lattice
Hyperplanes

A not so strong order

Let (W ,S) be a Coxeter system.
Let w ∈W such that w = s1 . . . sn for some si ∈ S. We say
that w has length n, `(w) = n, if n is minimal.

Example

Let ΓA2 : s t
.

`(stst) = 2 as stst = tstt = ts.

Let the (right) weak order be the order ≤R on the Cayley

graph where w ws
and `(w) < `(ws).
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Geometric versions
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Hyperplanes

A not so strong lattice
Theorem (Björner ’84)

Let (W ,S) be a finite Coxeter system. The weak order is a
lattice graded by length.

For finite Coxeter systems, there exists a longest element
in the weak order, w◦.

Example

Let ΓA2 : s t
.

e
t s

ts st

sts = w◦ = tst

A. Dermenjian (UQAM) The facial weak order in all its glory 30 Aug 2019 26/a lot



Background Facial Weak Order The Process Extra Extra
Motivation
Coxeter Groups
Facial Weak Order
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Parabolic Subgroups
(W ,S) a Coxeter system and I ⊆ S.

WI = 〈I〉— standard parabolic subgroup (long elt: w◦,I).
W I := {w ∈W | `(w) ≤ `(ws), for all s ∈ I} is the set of
min length coset representatives for W/WI .
Unique factorization: w = w I · wI with w I ∈W I , wI ∈WI .
By convention in this talk xWI means x ∈W I .

Example

Let ΓW : r s t u
and I = {r , t ,u}.

Then ΓWI : r t u

w = rtustr w = rts · utr
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So complex

(W ,S) a Coxeter system and I ⊆ S.
Coxeter complex - PW - complex whose faces are all the
standard parabolic cosets of W .

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
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The first stepping stone

Let (W ,S) be a finite Coxeter system.

Definition (Krob et.al. ’01, type A; Palacios, Ronco ’06)

The (right) facial weak order is the order ≤F on the Coxeter
complex PW defined by cover relations of two types:

(1) xWI <· xWI∪{s} if s /∈ I and x ∈W I∪{s},

(2) xWI <· xw◦,Iw◦,Ir{s}WIr{s} if s ∈ I,

where I ⊆ S and x ∈W I .
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A Coxeter example
(1) xWI <· xWI∪{s} if s /∈ I and x ∈W I∪{s}

(2) xWI <· xw◦,Iw◦,Ir{s}WIr{s} if s ∈ I

e

st

stts

sts

W{s}W{t}

tW{s} sW{t}

stW{s}tsW{t}

W

(1)(1)

(1)(1)

(1)(1)

(2)(2)

(2)(2)

(2)(2)

(1)(1)

(2)(2)
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Facial intervals for Coxeter groups
Proposition (Björner, Las Vergas, Sturmfels, White, Ziegler ’93)

Let (W ,S) be a finite Coxeter system and xWI a standard
parabolic coset. Then there exists a unique interval [x , xw◦,I ] in
the weak order such that

xWI = [x , xw◦,I ].

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
e

t s

ts st
sts

[e, s][e, t ]

[s, st ][t , ts]

[st , sts][ts, sts]

[e,e]

[t , t ] [s, s]

[ts, ts] [st , st ]

[sts, sts]

[e, sts]
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Facial weak order for Coxeter groups
Definition

Let ≤F ′ be the order on the Coxeter complex PW defined by

xWI ≤F ′ yWJ ⇔ x ≤R y and xw◦,I ≤R yw◦,J

e
t s

ts st
sts

[e, e]

[s, s][t , t ]

[st , st ][ts, ts]

[sts, sts]

[e, s][e, t ]

[t , ts] [s, st ]

[st , sts][ts, sts]

[e, sts]
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Visiting geometric lands
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A system of roots

Let A be a Coxeter arrangement.
A root system is Φ := {±αs ∈ V | Hs ∈ A, ||αs|| = 1}
We have Φ = Φ+ t Φ− decomposable into positive and
negative roots.

Example

Let ΓA2 : s t
.

αs

γ = αs + αt

αt

−αs

−γ

−αt

s t
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Inversions

Let (W ,S) be a Coxeter system.
Define (left) inversion sets as the set N(w) := Φ+ ∩ w(Φ−).

Example

Let ΓA2 : s t
, with Φ given by the roots

αs
γ = αs + αt

αt

−αs

−γ
−αt

s t

s t

N(ts) = Φ+ ∩ ts(Φ−)
= Φ+ ∩ {αt , γ,−αs}
= {αt , γ}
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Weak order = Inversion sets

Given w ,u ∈W then w ≤R u if and only if N(w) ⊆ N(u).

Example

Let ΓA2 : s t
, with Φ given by the roots

αs
γ = αs + αt

αt

−αs

−γ
−αt

e
t s

ts st

sts

∅

{αt} {αs}

{αt , γ} {αs, γ}
Φ+
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Root inversions
Definition (Root Inversion Set)

Let xWI be a standard parabolic coset. The root inversion set is
the set

R(xWI) := x(Φ− ∪ Φ+
I )

Note that N(x) = R(xW∅) ∩ Φ+.

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
αs

γ
αt

−αs

−γ
−αt

s
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Root inversions
Example

R(sW{t}) = s(Φ− ∪ Φ+
{t})

= s({−αs,−αt ,−γ} ∪ {αt})
= {αs,−γ,−αt , γ}

W{s}W{t}
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stW{s}tsW{t}

e

t s
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W
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γ
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−αs
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−αt
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Root inversions

Proposition (D., Hohlweg, Pilaud ’18)

Let xWI be a standard parabolic coset of W. Then

inner primal cone (F(xWI)) = cone (R(xWI)) .

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

e

t s

ts st

sts

W
αs

γ
αt

−αs

−γ
−αt

s
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Equivalent definitions

Theorem (D., Hohlweg, Pilaud ’18)

Let (W ,S) be a finite Coxeter system. The following conditions
are equivalent for two standard parabolic cosets xWI and yWJ
in the Coxeter complex PW

1. xWI ≤F yWJ

2. R(xWI) r R(yWJ) ⊆ Φ− and R(yWJ) r R(xWI) ⊆ Φ+.
3. x ≤R y and xw◦,I ≤R yw◦,J .
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Facial weak order lattice
Theorem (D., Hohlweg, Pilaud ’18)

The facial weak order (PW ,≤F ) is a lattice with the meet and
join of two standard parabolic cosets xWI and yWJ given by:

xWI ∧ yWJ = z∧WK∧ ,

xWI ∨ yWJ = z∨WK∨ .

where,

z∧ = x ∧ y and K∧ = DL
(
z−1
∧ (xw◦,I ∧ yw◦,J)

)
, and

z∨ = xw◦,I ∨ yw◦,J and K∨ = DL
(
z−1
∨ (x ∨ y)

)

Corollary (D., Hohlweg, Pilaud ’18)

The weak order is a sublattice of the facial weak order lattice.
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Example: A2 and B2

e

st

stts

sts

W{s}W{t}

tW{s} sW{t}

stW{s}tsW{t}

W

e

st

stts

ststst

stst

W{s}W{t}

sW{t}tW{s}

stW{s}tsW{t}

stsW{t}tstW{s}

W
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Example: B3

s

st
sts

srs

srst

sr

srt

srts

srtsr

(srt)2

(rt)2s

stsr

srtsrs

stsrs

e

srsr

r

rsr

rs
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srsrt

rt

rsrt

rst

ts

srsrts

rts

rsrts

rtst tsr

srsrtsr

rtsr

rsrtsr

rtsrt

tsrs

(srt)2sr

rtsrs
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srtsrst
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(srt)2st

tsrst
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Back to arrangements
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One step at a time
Proposition (D., Hohlweg, McConville, Pilaud, ’19+)

For F ,G ∈ FA if
1. |dim(F )− dim(G)| = 1
2. F ⊆ G and MF = MG, or

G ⊆ F and mF = mG.
then F <· G.

F0

F1

F2F3

F4

F5
R0

R1

R2

R3

R4

R5

F1

F2F3

F4

F5 F0
B

R1

R2

R3

R4

R5

0
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Zonotopes
Zonotope ZA is the convex polytope:

ZA :=

v ∈ V | v =
k∑

i=1

λiei , such that |λi | ≤ 1 for all i


Theorem (Edelman ’84, McMullen ’71)

There is a bijection between FA and the nonempty faces of ZA
given by the map

τ(F ) =

v ∈ V | v =
∑

F (Hi )=0

λiei +
∑

F (Hj ) 6=0

µjej


where |λi | ≤ 1 for all i and µj = F (Hj)
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Zonotope example

−e1

−e2
−e3

e1
e2

e3

H3H1

H2
τ(F1)

τ(F2)τ(F3)

τ(F4)

τ(F5) τ(F0)

τ(B)

τ(R1)

τ(R2)

τ(R3)

τ(R4)

τ(R5)
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Root inversions for arrangements

roots ΦA := {±e1,±e2, . . . ,±ek}
root inversion set
R(F ) := {e ∈ ΦA | 〈x ,e〉 ≤ 0 for some x ∈ int(F )}.

R(R4)

R(R3)

R(R5)

R(R2)

R(B)

R(R1)

R(F4)

R(F3)

R(F5)

R(F2)

R(F0)

R(F1)
R({0})

τ(R2)

τ(R3)

τ(R4)

τ(R5)

τ(B)

τ(R1)
τ(F5) τ(F0)

τ(F1)

τ(F2)τ(F3)

τ(F4) τ ({0})
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Root inversions for arrangements
Proposition (D., Hohlweg, McConville, Pilaud ’19+)

Let F be a face. Then

inner primal cone (τ(F )) = cone (R(F )) .

R(R4)

R(R3)

R(R5)

R(R2)

R(B)

R(R1)

R(F4)

R(F3)

R(F5)

R(F2)

R(F0)

R(F1)
R({0})

τ(R2)

τ(R3)

τ(R4)

τ(R5)

τ(B)

τ(R1)
τ(F5) τ(F0)

τ(F1)

τ(F2)τ(F3)

τ(F4) τ ({0})
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Covectors
covector - a vector in {−,0,+}A with signs relative to
hyperplanes.
L ⊆ {−,0,+}A - set of covectors

Example

F4(H1) = +; F4(H2) = 0; F4(H3) = − F4 ↔ (+,0,−)

−e1
−e2−e3

e1 e2
e3

H3H1

H2

F0

F1

F2F3

F4

F5
B

R1

R2

R3

R4

R5
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Covectors
covector - a vector in {−,0,+}A with signs relative to
hyperplanes.
L ⊆ {−,0,+}A - set of covectors

Example

F4(H1) = +; F4(H2) = 0; F4(H3) = − F4 ↔ (+,0,−)

−e1
−e2−e3

e1 e2
e3

H3H1

H2

(0,+,+)

(−, 0,+)

(−,−, 0)(0,−,−)

(+, 0,−)

(+,+, 0)
(+,+,+)

(−,+,+)

(−,−,+)

(−,−,−)

(+,−,−)

(+,+,−)
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Covector Definition
Definition

For X ,Y ∈ L:

X ≤L Y ⇔ X (H) ≥ Y (H) ∀H with − < 0 < +

−e1
−e2−e3

e1 e2
e3

H3H1

H2

(0,+,+)

(−, 0,+)

(−,−, 0)(0,−,−)

(+, 0,−)

(+,+, 0) (+,+,+)

(−,+,+)

(−,−,+)

(−,−,−)

(+,−,−)

(+,+,−)

(−, 0,+)

(−,−, 0)(0,−,−)

(+, 0,−)

(+,+, 0) (0,+,+)
(+,+,+)

(−,+,+)

(−,−,+)

(−,−,−)

(+,−,−)

(+,+,−)

(0, 0, 0)
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Equivalent definitions

Theorem (D., Hohlweg, McConville, Pilaud ’19+)

Let A be a hyperplane arrangement. For F ,G ∈ FA the
following are equivalent:

mF ≤PR mG and MF ≤PR MG in poset of regions PR(A,B).
There exists a chain of covers in FW(A,B) such that

F = F1 <· F2 <· · · · <· Fn = G

F ≤L G in terms of covectors (F (H) ≥ G(H) ∀H ∈ A)
R(F )\R(G) ⊆ Φ−A and R(G)\R(F ) ⊆ Φ+

A.
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Facial weak order lattice

Theorem (D., Hohlweg, McConville, Pilaud ’19+)

The facial weak order FW(A,B) is a lattice when PR(A,B) is a
lattice.

Corollary (D., Hohlweg, McConville, Pilaud ’19+)

The lattice of regions is a sublattice of the facial weak order
lattice when A is simplicial.
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Properties of the FWO
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Semi-distributive duality

The dual of a poset P is the poset Pop where x ≤ y in P iff
y ≤ x in Pop. A poset is self-dual if P ∼= Pop.
A lattice is semi-distributive if x ∨ y = x ∨ z implies
x ∨ y = x ∨ (y ∧ z) and similarly for the meets.

Theorem (D., Hohlweg, McConville, Pilaud ’19+)

The facial weak order FW(A,B) is self-dual. If furthermore, A is
simplicial, FW(A,B) is a semi-distributive lattice.
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Join-irreducible elements
An element is join-irreducible if and only if it covers exactly
one element.

Proposition (D., Hohlweg, McConville, Pilaud ’19+)

If A is a simplicial arrangement and F a face with facial interval
[mF ,MF ]. Then F is join-irreducible in FW(A,B) if and only if
MF is join-irreducible in PR(A,B) and codim(F ) ∈ {0,1}

Proposition (D., Hohlweg, Pilaud ’18)

Let (W ,S) be a finite Coxeter system. A standard parabolic
coxet xWI is join-irreducible in the facial weak order if and only
if we have one of the two following cases

I = ∅ and x is join-irreducible in the right weak order, or
I = {s} and xs is join-irreducible in the right weak order.

A. Dermenjian (UQAM) The facial weak order in all its glory 30 Aug 2019 53/we almost done?



Background Facial Weak Order The Process Extra Extra Properties Further Works

Möbius function
Recall that the Möbius function of a poset (P,≤) is the
function µ : P × P → Z defined inductively by

µ(x , y) :=


1 if x = y ,
−

∑
x≤z<y

µ(x , z) if x < y ,

0 otherwise.

Proposition (D., Hohlweg, Pilaud ’18)

The Möbius function of the facial weak order of a finite Coxeter
system (W ,S) is given by

µ(eW∅, yWJ) =
{

(−1)|J|, if y = e,
0, otherwise.
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Möbius function
Recall that the Möbius function of a poset (P,≤) is the
function µ : P × P → Z defined inductively by

µ(x , y) :=


1 if x = y ,
−

∑
x≤z<y

µ(x , z) if x < y ,

0 otherwise.

Proposition (D., Hohlweg, McConville, Pilaud ’19+)

Let X and Y be faces of A such that X ≤ Y and let Z = X ∩ Y.

µ(X ,Y ) =
{

(−1)rk(X)+rk(Y ) if X ≤ Z ≤ Y and Z = X−Z ∩ Y
0 otherwise
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Further Works

Can we explicitly state the join/meet of two elements for
hyperplane arrangements?

When is the facial weak order congruence uniform?

How many maximal chains are there?

What is the order dimension?

Can we generalize this to polytopes?
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Thank you!
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